Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Highlight
  • Published:

IRF1 and BATF: key drivers of type 1 regulatory T-cell differentiation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. La Cava A . Natural tregs and autoimmunity. Front Biosci 2009; 14: 333–343.

    Article  CAS  Google Scholar 

  2. Gagliani N, Magnani CF, Huber S, Gianolini ME, Pala M, Licona-Limon P et al. Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat Med 2013; 19: 739–746.

    Article  CAS  Google Scholar 

  3. Groux H, O'Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997; 389: 737–742.

    Article  CAS  Google Scholar 

  4. Bacchetta R, Sartirana C, Levings MK, Bordignon C, Narula S, Roncarolo MG . Growth and expansion of human T regulatory type 1 cells are independent from TCR activation but require exogenous cytokines. Eur J Immunol 2002; 32: 2237–2245.

    Article  CAS  Google Scholar 

  5. Hardenberg G, Steiner TS, Levings MK . Environmental influences on T regulatory cells in inflammatory bowel disease. Semin Immunol 2011; 23: 130–138.

    Article  CAS  Google Scholar 

  6. Zeng H, Zhang R, Jin B, Chen L . Type 1 regulatory T cells: a new mechanism of peripheral immune tolerance. Cell Mol Immunol 2015; 12: 566–571.

    Article  CAS  Google Scholar 

  7. Karwacz K, Miraldi ER, Pokrovskii M, Madi A, Yosef N, Wortman I et al. Critical role of IRF1 and BATF in forming chromatin landscape during type 1 regulatory cell differentiation. Nat Immunol 2017; 18: 412–421.

    Article  CAS  Google Scholar 

  8. Apetoh L, Quintana FJ, Pot C, Joller N, Xiao S, Kumar D et al. The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat Immunol 2010; 11: 854–861.

    Article  CAS  Google Scholar 

  9. Ciofani M, Madar A, Galan C, Sellars M, Mace K, Pauli F et al. A validated regulatory network for Th17 cell specification. Cell 2012; 151: 289–303.

    Article  CAS  Google Scholar 

  10. Kurachi M, Barnitz RA, Yosef N, Odorizzi PM, DiIorio MA, Lemieux ME et al. The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8+ T cells. Nat Immunol 2014; 15: 373–383.

    Article  CAS  Google Scholar 

  11. Croxford AL, Kurschus FC, Waisman A . Mouse models for multiple sclerosis: historical facts and future implications. Biochim Biophys Acta 2011; 1812: 177–183.

    Article  CAS  Google Scholar 

  12. Malek TR, Yu A, Vincek V, Scibelli P, Kong L . CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice. Implications for the nonredundant function of IL-2. Immunity 2002; 17: 167–178.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio La Cava.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giang, S., La Cava, A. IRF1 and BATF: key drivers of type 1 regulatory T-cell differentiation. Cell Mol Immunol 14, 652–654 (2017). https://doi.org/10.1038/cmi.2017.38

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2017.38

Search

Quick links