Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Overcoming HBV immune tolerance to eliminate HBsAg-positive hepatocytes via pre-administration of GM-CSF as a novel adjuvant for a hepatitis B vaccine in HBV transgenic mice

Abstract

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is known to be a potential vaccine adjuvant despite contradictory results from animal and human studies. The discrepancies may be due to the different doses and regimens of GM-CSF that were used, given that either mature or immature dendritic cells (DCs) could be induced under different conditions. To test the hypothesis that GM-CSF can be used as a novel adjuvant for a hepatitis B virus (HBV) therapeutic vaccine, we administered GM-CSF once per day for three days prior to vaccination with recombinant HBV vaccine (rHBVvac) in mice. We observed greater DC maturation in these pre-treated animals at day 3 as compared to day 1 or day 2 of daily GM-CSF administration. This strategy was further investigated for its ability to break the immune tolerance established in hepatitis B surface antigen-transgenic (HBsAg-Tg) animals. We found that the levels of induced anti-HBsAg antibodies were significantly higher in animals following three days of GM-CSF pre-treatment before rHBV vaccination after the third immunization. In addition to the increase in anti-HBsAg antibody levels, cell-mediated anti-HBsAg responses, including delayed-type hypersensitivity, T-cell proliferation, interferon-γ production, and cytotoxic T lymphocytes, were dramatically enhanced in the three-day GM-CSF pre-treated group. After adoptive transfers of CD8+ T cells from immunized animals, antigen-specific CD8+ T cells were observed in the livers of recipient HBsAg-Tg animals. Moreover, the three-day pre-treatments with GM-CSF prior to rHBVvac vaccination could significantly eliminate HBsAg-positive hepatocytes, suggesting beneficial therapeutic effects. Therefore, this protocol utilizing GM-CSF as an adjuvant in combination with the rHBVvac vaccine has the potential to become a novel immunotherapy for chronic hepatitis B patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 2
Figure 1
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Walter SR, Thein HH, Gidding HF, Amin J, Law MG, George J et al. Risk factors for hepatocellular carcinoma in a cohort infected with hepatitis B or C. J Gastroenterol Hepatol 2011; 26: 1757–1764.

    Article  PubMed  Google Scholar 

  2. Hahne SJ, Veldhuijzen IK, Wiessing L, Lim TA, Salminen M, Laar M . Infection with hepatitis B and C virus in Europe: a systematic review of prevalence and cost-effectiveness of screening. BMC Infect Dis 2013; 13: 181.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Boonstra A, Woltman AM, Janssen HL . Immunology of hepatitis B and hepatitis C virus infections. Best Pract Res Clin Gastroenterol 2008; 22: 1049–1061.

    Article  CAS  PubMed  Google Scholar 

  4. Chen DS . Hepatitis B vaccination: the key towards elimination and eradication of hepatitis B. J Hepatol 2009; 50: 805–816.

    Article  PubMed  Google Scholar 

  5. Michel ML, Tiollais P . Hepatitis B vaccines: protective efficacy and therapeutic potential. Pathol Biol (Paris) 2010; 58: 288–295.

    Article  CAS  Google Scholar 

  6. Brooks J, Gelson W, Rushbrook SM . Therapeutic advances in the management of chronic hepatitis B infection. Ther Adv Chronic Dis 2013; 4: 157–166.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Papatheodoridis GV, Manolakopoulos S, Archimandritis AJ . Current treatment indications and strategies in chronic hepatitis B virus infection. World J Gastroenterol 2008; 14: 6902–6910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lan P, Zhang C, Han Q, Zhang J, Tian Z . Therapeutic recovery of hepatitis B virus (HBV)-induced hepatocyte-intrinsic immune defect reverses systemic adaptive immune tolerance. Hepatology 2013; 58: 73–85.

    Article  CAS  PubMed  Google Scholar 

  9. Stoop JN, van der Molen RG, Baan CC, van der Laan LJ, Kuipers EJ, Kusters JG et al. Regulatory T cells contribute to the impaired immune response in patients with chronic hepatitis B virus infection. Hepatology 2005; 41: 771–778.

    Article  CAS  PubMed  Google Scholar 

  10. Heintges T, Petry W, Kaldewey M, Erhardt A, Wend UC, Gerlich WH et al. Combination therapy of active HBsAg vaccination and interferon-alpha in interferon-alpha nonresponders with chronic hepatitis B. Dig Dis Sci 2001; 46: 901–906.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang W, Wang J, Su B, Li R, Ding Z, Kang Y et al. Cimetidine augments Th1/Th2 dual polarized immune responses to recombinant HBV antigens. Vaccine 2011; 29: 4862–4868.

    Article  CAS  PubMed  Google Scholar 

  12. Zou Q, Yao X, Feng J, Yin Z, Flavell R, Hu Y et al. Praziquantel facilitates IFN-gamma-producing CD8+ T cells (Tc1) and IL-17-producing CD8+ T cells (Tc17) responses to DNA vaccination in mice. PLoS One 2011; 6: e25525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu B, Zou Q, Hu Y, Wang B . Interleukin-22 as a molecular adjuvant facilitates IL-17-producing CD8 T cell responses against a HBV DNA vaccine in mice. Hum Vaccin Immunother 2013; 9: 2133–2141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Metcalf D . The molecular biology and functions of the granulocyte-macrophage colony-stimulating factors. Blood 1986; 67: 257–267.

    CAS  PubMed  Google Scholar 

  15. van de Laar L, Coffer PJ, Woltman AM . Regulation of dendritic cell development by GM-CSF: molecular control and implications for immune homeostasis and therapy. Blood 2012; 119: 3383–3393.

    Article  CAS  PubMed  Google Scholar 

  16. Zhan Y, Xu Y, Lew AM . The regulation of the development and function of dendritic cell subsets by GM-CSF: more than a hematopoietic growth factor. Mol Immunol 2012; 52: 30–37.

    Article  CAS  PubMed  Google Scholar 

  17. Waller EK . The role of sargramostim (rhGM-CSF) as immunotherapy. Oncologist 2007; 12: 22–26.

    Article  CAS  PubMed  Google Scholar 

  18. Spearman P, Kalams S, Elizaga M, Metch B, Chiu YL, Allen M et al. Safety and immunogenicity of a CTL multiepitope peptide vaccine for HIV with or without GM-CSF in a phase I trial. Vaccine 2009; 27: 243–249.

    Article  CAS  PubMed  Google Scholar 

  19. Pilla L, Patuzzo R, Rivoltini L, Maio M, Pennacchioli E, Lamaj E et al. A phase II trial of vaccination with autologous, tumor-derived heat-shock protein peptide complexes Gp96, in combination with GM-CSF and interferon-alpha in metastatic melanoma patients. Cancer Immunol Immunother 2006; 55: 958–968.

    Article  CAS  PubMed  Google Scholar 

  20. Parmiani G, Castelli C, Pilla L, Santinami M, Colombo MP, Rivoltini L . Opposite immune functions of GM-CSF administered as vaccine adjuvant in cancer patients. Ann Oncol 2007; 18: 226–232.

    Article  CAS  PubMed  Google Scholar 

  21. Marshall JL, Gulley JL, Arlen PM, Beetham PK, Tsang KY, Slack R et al. Phase I study of sequential vaccinations with fowlpox-CEA(6D)-TRICOM alone and sequentially with vaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoembryonic antigen-expressing carcinomas. J Clin Oncol 2005; 23: 720–731.

    Article  CAS  PubMed  Google Scholar 

  22. Babinet C, Farza H, Morello D, Hadchouel M, Pourcel C . Specific expression of hepatitis B surface antigen (HBsAg) in transgenic mice. Science 1985; 230: 1160–1163.

    Article  CAS  PubMed  Google Scholar 

  23. Romani N, Gruner S, Brang D, Kampgen E, Lenz A, Trockenbacher B et al. Proliferating dendritic cell progenitors in human blood. J Exp Med 1994; 180: 83–93.

    Article  CAS  PubMed  Google Scholar 

  24. Palucka K, Banchereau J . Cancer immunotherapy via dendritic cells. Nat Rev Cancer 2012; 12: 265–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu C, Shu J, Jin X . Therapeutic vaccine for hepatitis B virus. J Immunol Tech Infect Dis 2012; 1: 1.

    Article  Google Scholar 

  26. Thimme R, Wieland S, Steiger C, Ghrayeb J, Reimann KA, Purcell RH et al. CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J Virol 2003; 77: 68–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rehermann B, Lau D, Hoofnagle JH, Chisari FV . Cytotoxic T lymphocyte responsiveness after resolution of chronic hepatitis B virus infection. J Clin Invest 1996; 97: 1655–1665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maini MK, Boni C, Lee CK, Larrubia JR, Reignat S, Ogg GS et al. The role of virus-specific CD8(+) cells in liver damage and viral control during persistent hepatitis B virus infection. J Exp Med 2000; 191: 1269–1280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kakimi K, Isogawa M, Chung J, Sette A, Chisari FV . Immunogenicity and tolerogenicity of hepatitis B virus structural and nonstructural proteins: implications for immunotherapy of persistent viral infections. J Virol 2002; 76: 8609–8620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van der Molen RG, Sprengers D, Binda RS, de Jong EC, Niesters HG, Kusters JG et al. Functional impairment of myeloid and plasmacytoid dendritic cells of patients with chronic hepatitis B. Hepatology 2004; 40: 738–746.

    Article  PubMed  Google Scholar 

  31. Woltman AM, Op den Brouw ML, Biesta PJ, Shi CC, Janssen HL . Hepatitis B virus lacks immune activating capacity, but actively inhibits plasmacytoid dendritic cell function. PLoS One 2011; 6: e15324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Duan XZ, Wang M, Li HW, Zhuang H, Xu D, Wang FS . Decreased frequency and function of circulating plasmocytoid dendritic cells (pDC) in hepatitis B virus infected humans. J Clin Immunol 2004; 24: 637–646.

    Article  CAS  PubMed  Google Scholar 

  33. Han Q, Lan P, Zhang J, Zhang C, Tian Z . Reversal of hepatitis B virus-induced systemic immune tolerance by intrinsic innate immune stimulation. J Gastroenterol Hepatol 2013; 28: 132–137.

    Article  CAS  PubMed  Google Scholar 

  34. Carey I, D’Antiga L, Bansal S, Longhi MS, Ma Y, Mesa IR et al. Immune and viral profile from tolerance to hepatitis B surface antigen clearance: a longitudinal study of vertically hepatitis B virus-infected children on combined therapy. J Virol 2011; 85: 2416–2428.

    Article  CAS  PubMed  Google Scholar 

  35. Shi Y, Liu CH, Roberts AI, Das J, Xu G, Ren G et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don’t know. Cell Res 2006; 16: 126–133.

    Article  CAS  PubMed  Google Scholar 

  36. Barouch DH, Santra S, Tenner-Racz K, Racz P, Kuroda MJ, Schmitz JE et al. Potent CD4+ T cell responses elicited by a bicistronic HIV-1 DNA vaccine expressing gp120 and GM-CSF. J Immunol 2002; 168: 562–568.

    Article  CAS  PubMed  Google Scholar 

  37. Ogawa T, Kusumoto M, Kuroki S, Nagata S, Yamanaka N, Kawano R et al. [Adjuvant GM-CSF cytokine gene therapy for breast cancer]. Gan To Kagaku Ryoho 2001; 28: 1512–1514.

    CAS  PubMed  Google Scholar 

  38. Steinman RM . Dendritic cells: understanding immunogenicity. Eur J Immunol 2007; 37: S53–S60.

    Article  CAS  PubMed  Google Scholar 

  39. Fajardo-Moser M, Berzel S, Moll H . Mechanisms of dendritic cell-based vaccination against infection. Int J Med Microbiol 2008; 298: 11–20.

    Article  PubMed  Google Scholar 

  40. Dudek AM, Martin S, Garg AD, Agostinis P . Immature, semi-mature, and fully mature dendritic cells: toward a DC-cancer cells interface that augments anticancer immunity. Front Immunol 2013; 4: 438.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kreider BL, Phillips PD, Prystowsky MB, Shirsat N, Pierce JH, Tushinski R et al. Induction of the granulocyte-macrophage colony-stimulating factor (CSF) receptor by granulocyte CSF increases the differentiative options of a murine hematopoietic progenitor cell. Mol Cell Biol 1990; 10: 4846–4853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Conti L, Gessani S . GM-CSF in the generation of dendritic cells from human blood monocyte precursors: recent advances. Immunobiology 2008; 213: 859–870.

    Article  CAS  PubMed  Google Scholar 

  43. Gosselin EJ, Wardwell K, Rigby WF, Guyre PM . Induction of MHC class II on human polymorphonuclear neutrophils by granulocyte/macrophage colony-stimulating factor, IFN-gamma, and IL-3. J Immunol 1993; 151: 1482–1490.

    CAS  PubMed  Google Scholar 

  44. Disis ML, Bernhard H, Shiota FM, Hand SL, Gralow JR, Huseby ES et al. Granulocyte-macrophage colony-stimulating factor: an effective adjuvant for protein and peptide-based vaccines. Blood 1996; 88: 202–210.

    CAS  PubMed  Google Scholar 

  45. Torres-Aguilar H, Blank M, Jara LJ, Shoenfeld Y . Tolerogenic dendritic cells in autoimmune diseases: crucial players in induction and prevention of autoimmunity. Autoimmun Rev 2010; 10: 8–17.

    Article  CAS  PubMed  Google Scholar 

  46. Lutz MB, Kukutsch NA, Menges M, Rossner S, Schuler G . Culture of bone marrow cells in GM-CSF plus high doses of lipopolysaccharide generates exclusively immature dendritic cells which induce alloantigen-specific CD4 T cell anergy in vitro. Eur J Immunol 2000; 30: 1048–1052.

    Article  CAS  PubMed  Google Scholar 

  47. Wei WC, Su YH, Chen SS, Sheu JH, Yang NS . GM-CSF plays a key role in zymosan-stimulated human dendritic cells for activation of Th1 and Th17 cells. Cytokine 2011; 55: 79–89.

    Article  CAS  PubMed  Google Scholar 

  48. Daro E, Pulendran B, Brasel K, Teepe M, Pettit D, Lynch DH et al. Polyethylene glycol-modified GM-CSF expands CD11b(high)CD11c(high) but notCD11b(low)CD11c(high) murine dendritic cells in vivo: a comparative analysis with Flt3 ligand. J Immunol 2000; 165: 49–58.

    Article  CAS  PubMed  Google Scholar 

  49. Nair S, Perrillo RP . Serum alanine aminotransferase flares during interferon treatment of chronic hepatitis B: is sustained clearance of HBV DNA dependent on levels of pretreatment viremia? Hepatology 2001; 34: 1021–1026.

    Article  CAS  PubMed  Google Scholar 

  50. Yang PL, Althage A, Chung J, Maier H, Wieland S, Isogawa M et al. Immune effectors required for hepatitis B virus clearance. Proc Natl Acad Sci USA 2010; 107: 798–802.

    Article  CAS  PubMed  Google Scholar 

  51. Phillips S, Chokshi S, Riva A, Evans A, Williams R, Naoumov NV . CD8(+) T cell control of hepatitis B virus replication: direct comparison between cytolytic and noncytolytic functions. J Immunol 2010; 184: 287–295.

    Article  CAS  PubMed  Google Scholar 

  52. Ando K, Guidotti LG, Wirth S, Ishikawa T, Missale G, Moriyama T et al. Class I-restricted cytotoxic T lymphocytes are directly cytopathic for their target cells in vivo. J Immunol 1994; 152: 3245–3253.

    CAS  PubMed  Google Scholar 

  53. Xie X, Geng S, Liu H, Li C, Yang Y, Wang B . Cimetidine synergizes with Praziquantel to enhance the immune response of HBV DNA vaccine via activating cytotoxic CD8(+) T cell. Hum Vaccin Immunother 2014; 10: 1688–1699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. van der Burg SH, Arens R, Melief CJ . Immunotherapy for persistent viral infections and associated disease. Trends Immunol 2011; 32: 97–103.

    Article  CAS  PubMed  Google Scholar 

  55. Schurich A, Khanna P, Lopes AR, Han KJ, Peppa D, Micco L et al. Role of the coinhibitory receptor cytotoxic T lymphocyte antigen-4 on apoptosis-Prone CD8 T cells in persistent hepatitis B virus infection. Hepatology 2011; 53: 1494–1503.

    Article  CAS  PubMed  Google Scholar 

  56. Chisari FV, Isogawa M, Wieland SF . Pathogenesis of hepatitis B virus infection. Pathol Biol (Paris) 2010; 58: 258–266.

    Article  CAS  Google Scholar 

  57. Roth E, Pircher H . IFN-γ promotes Fas ligand-and perforin-mediated liver cell destruction by cytotoxic CD8 T cells. J Immunol 2004; 172:1588–1594.

    Article  CAS  PubMed  Google Scholar 

  58. Spanaus KS, Schlapbach R, Fontana A . TNF-alpha and IFN-gamma render microglia sensitive to Fas ligand-induced apoptosis by induction of Fas expression and down-regulation of Bcl–2 and Bcl-xL. Eur J Immunol 1998; 28: 4398–4408.

    Article  CAS  PubMed  Google Scholar 

  59. Zou Q, Yao X, Feng J, Yin Z, Flavell R, Hu Y et al. Praziquantel facilitates IFN-γ-producing CD8+ T cells (Tc1) and IL-17-producing CD8+ T cells (Tc17) responses to DNA vaccination in mice. PLoS One 2011; 6: e25525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bertoletti A, Kennedy PT . The immune tolerant phase of chronic HBV infection: new perspectives on an old concept. Cell Mol Immunol 2015; 12: 258–263.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the MOST National 863 Project of China (2012AA02A407) and the National Science and Technology Major Program of Infectious Diseases (2013ZX10002001) to Bin Wang. We thank Dr. Douglas Lowrie for his editing and proofreading of the manuscript. We also thank Dr. Jane Q.L. Yu, Mr. Zhonghuai He, and Mr. Xianghua Shi for their assistance with this work.

Author information

Authors and Affiliations

Authors

Additional information

Supplementary Information accompanies the paper on Cellular & Molecular Immunology website: http://www.nature.com/cmi.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Dong, A., Xiao, J. et al. Overcoming HBV immune tolerance to eliminate HBsAg-positive hepatocytes via pre-administration of GM-CSF as a novel adjuvant for a hepatitis B vaccine in HBV transgenic mice. Cell Mol Immunol 13, 850–861 (2016). https://doi.org/10.1038/cmi.2015.64

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2015.64

Keywords

This article is cited by

Search

Quick links