Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Impaired T-cell differentiation in diabetic foot ulceration

Abstract

Foot ulceration is one of the most debilitating complications associated with diabetes, but its cause remains poorly understood. Several studies have been undertaken to understand healing kinetics or find possible therapies to enhance healing. However, few studies have been directed at understanding the immunological alterations that could influence wound healing in diabetes. In this study, we analysed the T-cell receptor (TCR) repertoire diversity in TCR-αβ+ T cells. We also analysed the distribution and phenotype of T cells obtained from the peripheral blood of healthy controls and diabetic individuals with or without foot ulcers. Our results showed that diabetic individuals, especially those with foot ulcers, have a significantly lower naive T-cell number and a poorer TCR-Vβ repertoire diversity. We also showed that the reduced TCR-Vβ repertoire diversity in diabetic individuals was mainly owing to the accumulation of effector T cells, the major source of tumour necrosis factor-α production, which was even more pronounced in patients with acute foot ulceration. Moreover, the expression of several inflammatory chemokine receptors was significantly reduced in diabetic patients. In conclusion, effector T-cell accumulation and TCR repertoire diversity reduction appear to precede the development of foot ulcers. This finding may open new immunological therapeutic possibilities and provide a new prognostic tool in diabetic wound care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Moura LI, Dias AM, Carvalho E, de Sousa HC . Recent advances on the development of wound dressings for diabetic foot ulcer treatment—a review. Acta Biomater 2013; 9: 7093–7114.

    Article  CAS  PubMed  Google Scholar 

  2. Moura J, Borsheim E, Carvalho E . The role of microRNAs in diabetic complications-special emphasis on wound healing. Genes 2014; 5: 926–956.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kavitha KV, Tiwari S, Purandare VB, Khedkar S, Bhosale SS, Unnikrishnan AG . Choice of wound care in diabetic foot ulcer: a practical approach. World J Diabetes 2014; 5: 546–556.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Berlanga-Acosta J . Diabetic lower extremity wounds: the rationale for growth factors-based infiltration treatment. Int Wound J 2011; 8: 612–620.

    Article  PubMed  Google Scholar 

  5. Drela E, Stankowska K, Kulwas A, Rosc D . Endothelial progenitor cells in diabetic foot syndrome. Adv Clin Exp Med 2012; 21: 249–254.

    PubMed  Google Scholar 

  6. Kirana S, Stratmann B, Prante C, Prohaska W, Koerperich H, Lammers D et al. Autologous stem cell therapy in the treatment of limb ischaemia induced chronic tissue ulcers of diabetic foot patients. Int J Clin Pract 2012; 66: 384–393.

    Article  CAS  PubMed  Google Scholar 

  7. Al-Wahbi AM . Impact of a diabetic foot care education program on lower limb amputation rate. Vasc Health Risk Manag 2010; 6: 923–934.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Doupis J, Veves A . Classification, diagnosis, and treatment of diabetic foot ulcers. Wounds 2008; 20: 117–126.

    PubMed  Google Scholar 

  9. Kishore S, Upadhyay AD, Jyotsna VP . Categories of foot at risk in patients of diabetes at a tertiary care center: insights into need for foot care. Indian J Endocrinol Metab 2015; 19: 405–410.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dinh T, Tecilazich F, Kafanas A, Doupis J, Gnardellis C, Leal E et al. Mechanisms involved in the development and healing of diabetic foot ulceration. Diabetes 2012; 61: 2937–2947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Acosta JB, del Barco DG, Vera DC, Savigne W, Lopez-Saura P, Guillen Nieto G et al. The pro-inflammatory environment in recalcitrant diabetic foot wounds. Int Wound J 2008; 5: 530–539.

    Article  PubMed  Google Scholar 

  12. Tuttolomondo A, Maida C, Pinto A . Diabetic foot syndrome as a possible cardiovascular marker in diabetic patients. J Diabetes Res 2015; 2015: 268390.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tellechea A, Kafanas A, Leal EC, Tecilazich F, Kuchibhotla S, Auster ME et al. Increased skin inflammation and blood vessel density in human and experimental diabetes. Int J Low Extrem Wounds 2013; 12: 4–11.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tuttolomondo A, Maida C, Pinto A . Diabetic foot syndrome: Immune-inflammatory features as possible cardiovascular markers in diabetes. World J Orthop 2015; 6: 62–76.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pinto A, Tuttolomondo A, Di Raimondo D, Fernandez P, La Placa S, Di Gati M et al. Cardiovascular risk profile and morbidity in subjects affected by type 2 diabetes mellitus with and without diabetic foot. Metabolism 2008; 57: 676–682.

    Article  CAS  PubMed  Google Scholar 

  16. Pinto A, Tuttolomondo A, Di Raimondo D, La Placa S, Di Sciacca R, Fernandez P et al. Ischemic stroke in patients with diabetic foot. Int Angiol 2007; 26: 266–269.

    CAS  PubMed  Google Scholar 

  17. Tuttolomondo A, La Placa S, Di Raimondo D, Bellia C, Caruso A, Lo Sasso B et al. Adiponectin, resistin and IL-6 plasma levels in subjects with diabetic foot and possible correlations with clinical variables and cardiovascular co-morbidity. Cardiovasc Diabetol 2010; 9: 50.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Otranto M, Nascimento AP, Monte-Alto-Costa A . Insulin resistance impairs cutaneous wound healing in mice. Wound Repair Regen 2013; 21: 464–472.

    Article  PubMed  Google Scholar 

  19. Dickinson S, Hancock DP, Petocz P, Ceriello A, Brand-Miller J . High-glycemic index carbohydrate increases nuclear factor-kappaB activation in mononuclear cells of young, lean healthy subjects. Am J Clin Nutr 2008; 87: 1188–1193.

    CAS  PubMed  Google Scholar 

  20. Stegenga ME, van der Crabben SN, Dessing MC, Pater JM, van den Pangaart PS, de Vos AF et al. Effect of acute hyperglycaemia and/or hyperinsulinaemia on proinflammatory gene expression, cytokine production and neutrophil function in humans. Diabet Med 2008; 25: 157–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bogdanski P, Pupek-Musialik D, Dytfeld J, Jagodzinski PP, Jablecka A, Kujawa A et al. Influence of insulin therapy on expression of chemokine receptor CCR5 and selected inflammatory markers in patients with type 2 diabetes mellitus. Int J Clin Pharmacol Ther 2007; 45: 563–567.

    Article  CAS  PubMed  Google Scholar 

  22. Kaser S, Kaser A, Sandhofer A, Ebenbichler CF, Tilg H, Patsch JR . Resistin messenger-RNA expression is increased by proinflammatory cytokines in vitro. BiochemBiophys Res Commun 2003; 309: 286–290.

    Article  CAS  Google Scholar 

  23. Gardner SE, Hillis SL, Heilmann K, Segre JA, Grice EA . The neuropathic diabetic foot ulcer microbiome is associated with clinical factors. Diabetes 2013; 62: 923–930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mi Q, Riviere B, Clermont G, Steed DL, Vodovotz Y . Agent-based model of inflammation and wound healing: insights into diabetic foot ulcer pathology and the role of transforming growth factor-beta1. Wound Repair Regen 2007; 15: 671–682.

    Article  PubMed  Google Scholar 

  25. Davis PA, Corless DJ, Aspinall R, Wastell C . Effect of CD4(+) and CD8(+) cell depletion on wound healing. Br J Surg 2001; 88: 298–304.

    Article  CAS  PubMed  Google Scholar 

  26. Loots MA, Lamme EN, Zeegelaar J, Mekkes JR, Bos JD, Middelkoop E . Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds. J Investig Dermatol 1998; 111: 850–857.

    Article  CAS  PubMed  Google Scholar 

  27. Brunner S, Herndler-Brandstetter D, Weinberger B, Grubeck-Loebenstein B . Persistent viral infections and immune aging. Ageing Res Rev 2011; 10: 362–369.

    Article  CAS  PubMed  Google Scholar 

  28. Viallard JF, Ruiz C, Guillet M, Pellegrin JL, Moreau JF . Perturbations of the CD8(+) T-cell repertoire in CVID patients with complications. Results Immunol 2013; 3: 122–128.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kharbanda M, McCloskey TW, Pahwa R, Sun M, Pahwa S . Alterations in T-cell receptor Vbeta repertoire of CD4 and CD8 T lymphocytes in human immunodeficiency virus-infected children. Clin Diagn Lab Immunol 2003; 10: 53–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Luo W, Su J, Zhang XB, Yang Z, Zhou MQ, Jiang ZM et al. Limited T cell receptor repertoire diversity in tuberculosis patients correlates with clinical severity. PloS One 2012; 7: e48117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xiong Y, Tan Y, Song YG . Analysis of T cell receptor Vbeta diversity in peripheral CD4+ and CD8+ T lymphocytes obtained from patients with chronic severe hepatitis B. Hepat Mon 2014; 14: e15900.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Stockinger B, Barthlott T, Kassiotis G . The concept of space and competition in immune regulation. Immunology 2004; 111: 241–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yager EJ, Ahmed M, Lanzer K, Randall TD, Woodland DL, Blackman MA . Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J Exp Med 2008; 205: 711–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Blackman MA, Woodland DL . The narrowing of the CD8 T cell repertoire in old age. Curr Opin Immunol 2011; 23: 537–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Armstrong KM, Piepenbrink KH, Baker BM . Conformational changes and flexibility in T-cell receptor recognition of peptide-MHC complexes. Biochem J 2008; 415: 183–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Werdin F, Tennenhaus M, Schaller HE, Rennekampff HO . Evidence-based management strategies for treatment of chronic wounds. Eplasty 2009; 9: e19.

    PubMed  PubMed Central  Google Scholar 

  37. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 concerted action BMH4-CT98-3936. Leukemia 2003; 17: 2257–2317.

    Article  CAS  PubMed  Google Scholar 

  38. Renzi P, Ginns LC . Analysis of T cell subsets in normal adults. Comparison of whole blood lysis technique to Ficoll-Hypaque separation by flow cytometry. J Immunol Methods 1987; 98: 53–56.

    Article  CAS  PubMed  Google Scholar 

  39. Appay V, van Lier RA, Sallusto F, Roederer M . Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry Part A 2008; 73: 975–983.

    Article  Google Scholar 

  40. Campana D, Thompson JS, Amlot P, Brown S, Janossy G . The cytoplasmic expression of CD3 antigens in normal and malignant cells of the T lymphoid lineage. J Immunol 1987; 138: 648–655.

    CAS  PubMed  Google Scholar 

  41. Mirza RE, Koh TJ . Contributions of cell subsets to cytokine production during normal and impaired wound healing. Cytokine 2015; 71: 409–412.

    Article  CAS  PubMed  Google Scholar 

  42. Barbul A, Regan MC . The regulatory role of T lymphocytes in wound healing. J Trauma 1990; 30: S97–100.

    Article  CAS  PubMed  Google Scholar 

  43. Efron JE, Frankel HL, Lazarou SA, Wasserkrug HL, Barbul A . Wound healing and T-lymphocytes. J Surg Res 1990; 48: 460–463.

    Article  CAS  PubMed  Google Scholar 

  44. Barbul A, Breslin RJ, Woodyard JP, Wasserkrug HL, Efron G . The effect of in vivo T helper and T suppressor lymphocyte depletion on wound healing. Ann Surg 1989; 209: 479–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aspalter RM, Eibl MM, Wolf HM . Regulation of TCR-mediated T cell activation by TNF-RII. J Leukoc Biol 2003; 74: 572–582.

    Article  CAS  PubMed  Google Scholar 

  46. Watts TH . Staying alive: T cell costimulation, CD28, and Bcl-xL. J Immunol 2010; 185: 3785–3787.

    Article  CAS  PubMed  Google Scholar 

  47. Hasnan J, Yusof MI, Damitri TD, Faridah AR, Adenan AS, Norbaini TH . Relationship between apoptotic markers (Bax and Bcl-2) and biochemical markers in type 2 diabetes mellitus. Singapore Med J 2010; 51: 50–55.

    CAS  PubMed  Google Scholar 

  48. Ruckert R, Lindner G, Bulfone-Paus S, Paus R . High-dose proinflammatory cytokines induce apoptosis of hair bulb keratinocytes in vivo. Br J Dermatol 2000; 143: 1036–1039.

    Article  CAS  PubMed  Google Scholar 

  49. Ponugoti B, Dong G, Graves DT . Role of forkhead transcription factors in diabetes-induced oxidative stress. Exp Diabetes Res 2012; 2012: 939751.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Potente M, Urbich C, Sasaki K, Hofmann WK, Heeschen C, Aicher A et al. Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J Clin Investig 2005; 115: 2382–2392.

    Article  CAS  PubMed  Google Scholar 

  51. Siqueira MF, Li J, Chehab L, Desta T, Chino T, Krothpali N et al. Impaired wound healing in mouse models of diabetes is mediated by TNF-alpha dysregulation and associated with enhanced activation of forkhead box O1 (FOXO1). Diabetologia 2010; 53: 378–388.

    Article  CAS  PubMed  Google Scholar 

  52. Moura LI, Silva L, Leal EC, Tellechea A, Cruz MT, Carvalho E . Neurotensin modulates the migratory and inflammatory response of macrophages under hyperglycemic conditions. BioMed Res Int 2013; 2013: 941764.

    Article  PubMed  PubMed Central  Google Scholar 

  53. da Silva L, Neves BM, Moura L, Cruz MT, Carvalho E . Neurotensin downregulates the pro-inflammatory properties of skin dendritic cells and increases epidermal growth factor expression. Biochim Biophys Acta 2011; 1813: 1863–1871.

    Article  CAS  PubMed  Google Scholar 

  54. Moura LI, Dias AM, Leal EC, Carvalho L, de Sousa HC, Carvalho E . Chitosan-based dressings loaded with neurotensin—an efficient strategy to improve early diabetic wound healing. Acta Biomater 2014; 10: 843–857.

    Article  CAS  PubMed  Google Scholar 

  55. Sauty A, Colvin RA, Wagner L, Rochat S, Spertini F, Luster AD . CXCR3 internalization following T cell-endothelial cell contact: preferential role of IFN-inducible T cell alpha chemoattractant (CXCL11). J Immunol 2001; 167: 7084–7093.

    Article  CAS  PubMed  Google Scholar 

  56. Rose JJ, Foley JF, Murphy PM, Venkatesan S . On the mechanism and significance of ligand-induced internalization of human neutrophil chemokine receptors CXCR1 and CXCR2. J Biol Chem 2004; 279: 24372–24386.

    Article  CAS  PubMed  Google Scholar 

  57. Maritzen T, Schachtner H, Legler DF . On the move: endocytic trafficking in cell migration. Cell Mol Life Sci 2015; 72: 2119–2134.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financed by FEDER funds by the operational program Factors of Competitivity – COMPETE, by the Portuguese Foundation for Science and Technology (FCT) - EXCL/DTP-PIC/0069/2012, PEst-C/SAU/LA0001/2013 and UID/NEU/04539/2013, the EFSD European Research Programme in Microvascular Complications of Diabetes supported by Novartis, and Forum Hematológico do Norte, Portugal. Eugénia Carvalho is partly funded by the Arkansas Biosciences Institute, the major research component of the Arkansas Tobacco Settlement Proceeds Act of 2000, NIH P30AG028718, and NIH RO1 AG033761.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Moura.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moura, J., Rodrigues, J., Gonçalves, M. et al. Impaired T-cell differentiation in diabetic foot ulceration. Cell Mol Immunol 14, 758–769 (2017). https://doi.org/10.1038/cmi.2015.116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2015.116

Keywords

This article is cited by

Search

Quick links