Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

TLR2 and TLR4 signaling pathways are required for recombinant Brucella abortus BCSP31-induced cytokine production, functional upregulation of mouse macrophages, and the Th1 immune response in vivo and in vitro

Abstract

Brucella abortus is a zoonotic Gram-negative pathogen that causes brucelosis in ruminants and humans. Toll-like receptors (TLRs) recognize Brucella abortus and initiate antigen-presenting cell activities that affect both innate and adaptive immunity. In this study, we focused on recombinant Brucella cell-surface protein 31 (rBCSP31) to determine its effects on mouse macrophages. Our results demonstrated that rBCSP31 induced TNF-α, IL-6 and IL-12p40 production, which depended on the activation of mitogen-activated protein kinases (MAPKs) by stimulating the rapid phosphorylation of p38 and JNK and the activation of transcription factor NF-κB in macrophages. In addition, continuous exposure (>24 h) of RAW264.7 cells to rBCSP31 significantly enhanced IFN-γ-induced expression of MHC-II and the ability to present rBCSP31 peptide to CD4+ T cells. Furthermore, we found that rBCSP31 could interact with both TLR2 and TLR4. The rBCSP31-induced cytokine production by macrophages from TLR2−/− and TLR4−/− mice was lower than that from C57BL/6 macrophages, and the activation of NF-κB and MAPKs was attenuated in macrophages from TLR2−/− and TLR4−/− mice. In addition, CD4+ T cells from C57BL/6 mice immunized with rBCSP31 produced higher levels of IFN-γ and IL-2 compared with CD4+ T cells from TLR2−/− and TLR4−/− mice. Macrophages from immunized C57BL/6 mice produced higher levels of IL-12p40 than those from TLR2−/− and TLR4−/− mice. Furthermore, immunization with rBCSP31 provided better protection in C57BL/6 mice than in TLR2−/− and TLR4−/− mice after B. abortus 2308 challenge. These results indicate that rBCSP31 is a TLR2 and TLR4 agonist that induces cytokine production, upregulates macrophage function and induces the Th1 immune response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Al Dahouk S, Nockler K, Hensel A, Tomaso H, Scholz HC, Hagen RM et al. Human brucellosis in a nonendemic country: a report from Germany, 2002 and 2003. Eur J Clin Microbiol Infect Dis 2005; 24: 450–456.

    Article  CAS  PubMed  Google Scholar 

  2. Cheers C . Pathogenesis and cellular immunity in experimental murine brucellosis. Dev Biol Stand 1984; 56: 237–246.

    CAS  PubMed  Google Scholar 

  3. Dornand J, Gross A, Lafont V, Liautard J, Oliaro J, Liautard JP . The innate immune response against Brucella in humans. Vet Microbiol 2002; 90: 383–394.

    Article  CAS  PubMed  Google Scholar 

  4. Golding B, Scott DE, Scharf O, Huang LY, Zaitseva M, Lapham C et al. Immunity and protection against Brucella abortus. Microbes Infect 2001; 3: 43–48.

    Article  CAS  PubMed  Google Scholar 

  5. Zhan Y, Cheers C . Differential induction of macrophage-derived cytokines by live and dead intracellular bacteria in vitro. Infect Immun 1995; 63: 720–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kawai T, Akira S . Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011; 34: 637–650.

    Article  CAS  PubMed  Google Scholar 

  7. Iwasaki A, Medzhitov R . Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004; 5: 987–995.

    Article  CAS  PubMed  Google Scholar 

  8. Lorenz E, Patel DD, Hartung T, Schwartz DA . Toll-like receptor 4 (TLR4)-deficient murine macrophage cell line as an in vitro assay system to show TLR4-independent signaling of Bacteroides fragilis lipopolysaccharide. Infect Immun 2002; 70: 4892–4896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hirschfeld M, Weis JJ, Toshchakov V, Salkowski CA, Cody MJ, Ward DC et al. Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect Immun 2001; 69: 1477–1482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pei J, Ding X, Fan Y, Rice-Ficht A, Ficht TA . Toll-like receptors are critical for clearance of Brucella and play different roles in development of adaptive immunity following aerosol challenge in mice. Front Cell Infect Microbiol 2012; 2: 115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lien E, Sellati TJ, Yoshimura A, Flo TH, Rawadi G, Finberg RW et al. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J Biol Chem 1999; 274: 33419–33425.

    Article  CAS  PubMed  Google Scholar 

  12. Underhill DM, Ozinsky A, Hajjar AM, Stevens A, Wilson CB, Bassetti M et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 1999; 401: 811–815.

    Article  CAS  PubMed  Google Scholar 

  13. Chen ST, Li JY, Zhang Y, Gao X, Cai H . Recombinant MPT83 derived from Mycobacterium tuberculosis induces cytokine production and upregulates the function of mouse macrophages through TLR2. J Immunol 2012; 188: 668–677.

    Article  CAS  PubMed  Google Scholar 

  14. Hirschfeld M, Kirschning CJ, Schwandner R, Wesche H, Weis JH, Wooten RM et al. Cutting edge: inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by Toll-like receptor 2. J Immunol 1999; 163: 2382–2386.

    CAS  PubMed  Google Scholar 

  15. Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD et al. Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science 1999; 285: 736–739.

    Article  CAS  PubMed  Google Scholar 

  16. Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR et al. Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science 1999; 285: 732–736.

    Article  CAS  PubMed  Google Scholar 

  17. Takeda K, Kaisho T, Akira S . Toll-like receptors. Annu Rev Immunol 2003; 21: 335–376.

    Article  CAS  PubMed  Google Scholar 

  18. Kaisho T, Akira S . Toll-like receptor function and signaling. J Allergy Clin Immunol 2006; 117: 979–987; quiz 988.

    Article  CAS  PubMed  Google Scholar 

  19. Trinchieri G, Sher A . Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 2007; 7: 179–190.

    Article  CAS  PubMed  Google Scholar 

  20. Kawai T, Akira S . TLR signaling. Cell Death Differ 2006; 13: 816–825.

    Article  CAS  PubMed  Google Scholar 

  21. Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 1998; 2: 253–258.

    Article  CAS  PubMed  Google Scholar 

  22. Aderem A, Ulevitch RJ . Toll-like receptors in the induction of the innate immune response. Nature 2000; 406: 782–787.

    Article  CAS  PubMed  Google Scholar 

  23. Janeway CA Jr, Medzhitov R . Innate immune recognition. Annu Rev Immunol 2002; 20: 197–216.

    Article  CAS  PubMed  Google Scholar 

  24. Chen ZJ . Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 2005; 7: 758–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O'Neill LA, Bowie AG . The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 2007; 7: 353–364.

    Article  CAS  PubMed  Google Scholar 

  26. Adhikari A, Xu M, Chen ZJ . Ubiquitin-mediated activation of TAK1 and IKK. Oncogene 2007; 26: 3214–3226.

    Article  CAS  PubMed  Google Scholar 

  27. Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T et al. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 2005; 6: 1087–1095.

    Article  CAS  PubMed  Google Scholar 

  28. Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S . Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev 1995; 9: 2723–2735.

    Article  CAS  PubMed  Google Scholar 

  29. Majumdar S, Aggarwal BB . Methotrexate suppresses NF-kappaB activation through inhibition of IkappaBalpha phosphorylation and degradation. J Immunol 2001; 167: 2911–2920.

    Article  CAS  PubMed  Google Scholar 

  30. Ashikawa K, Majumdar S, Banerjee S, Bharti AC, Shishodia S, Aggarwal BB . Piceatannol inhibits TNF-induced NF-kappaB activation and NF-kappaB-mediated gene expression through suppression of IkappaBalpha kinase and p65 phosphorylation. J Immunol 2002; 169: 6490–6497.

    Article  CAS  PubMed  Google Scholar 

  31. Baeuerle PA, Baichwal VR . NF-kappa B as a frequent target for immunosuppressive and anti-inflammatory molecules. Adv Immunol 1997; 65: 111–137.

    Article  CAS  PubMed  Google Scholar 

  32. Shishodia S, Aggarwal BB . Nuclear factor-kappaB activation: a question of life or death. J Biochem Mol Biol 2002; 35: 28–40.

    CAS  PubMed  Google Scholar 

  33. Reiling N, Blumenthal A, Flad HD, Ernst M, Ehlers S . Mycobacteria-induced TNF-alpha and IL-10 formation by human macrophages is differentially regulated at the level of mitogen-activated protein kinase activity. J Immunol 2001; 167: 3339–3345.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang C, Bai N, Chang A, Zhang Z, Yin J, Shen W et al. ATF4 is directly recruited by TLR4 signaling and positively regulates TLR4-trigged cytokine production in human monocytes. Cell Mol Immunol 2013; 10: 84–94.

    Article  CAS  PubMed  Google Scholar 

  35. Wada T, Penninger JM . Mitogen-activated protein kinases in apoptosis regulation. Oncogene 2004; 23: 2838–2849.

    Article  CAS  PubMed  Google Scholar 

  36. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 1994; 372: 739–746.

    Article  CAS  PubMed  Google Scholar 

  37. Nick JA, Avdi NJ, Gerwins P, Johnson GL, Worthen GS . Activation of a p38 mitogen-activated protein kinase in human neutrophils by lipopolysaccharide. J Immunol 1996; 156: 4867–4875.

    CAS  PubMed  Google Scholar 

  38. Zhan Y, Kelso A, Cheers C . Cytokine production in the murine response to Brucella infection or immunization with antigenic extracts. Immunology 1993; 80: 458–464.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zaitseva M, Golding H, Manischewitz J, Webb D, Golding B . Brucella abortus as a potential vaccine candidate: induction of interleukin-12 secretion and enhanced B7.1 and B7.2 and intercellular adhesion molecule 1 surface expression in elutriated human monocytes stimulated by heat-inactivated B. abortus. Infect Immun 1996; 64: 3109–3117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang LY, Aliberti J, Leifer CA, Segal DM, Sher A, Golenbock DT et al. Heat-killed Brucella abortus induces TNF and IL-12p40 by distinct MyD88-dependent pathways: TNF, unlike IL-12p40 secretion, is Toll-like receptor 2 dependent. J Immunol 2003; 171: 1441–1446.

    Article  CAS  PubMed  Google Scholar 

  41. Tabatabai LB, Deyoe BL, Patterson JM . Immunogenicity of Brucella abortus salt-extractable proteins. Vet Microbiol 1989; 20: 49–58.

    Article  CAS  PubMed  Google Scholar 

  42. Stabel TJ, Mayfield JE, Tabatabai LB, Wannemuehler MJ . Oral immunization of mice with attenuated Salmonella typhimurium containing a recombinant plasmid which codes for production of a 31-kilodalton protein of Brucella abortus. Infect Immun 1990; 58: 2048–2055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pugh GW Jr, Tabatabai LB, Bricker BJ, Mayfield JE, Phillips M, Zehr ES et al. Immunogenicity of Brucella-extracted and recombinant protein vaccines in CD-1 and BALB/c mice. Am J Vet Res 1990; 51: 1413–1420.

    CAS  PubMed  Google Scholar 

  44. Stabel TJ, Mayfield JE, Tabatabai LB, Wannemuehler MJ . Swine immunity to an attenuated Salmonella typhimurium mutant containing a recombinant plasmid which codes for production of a 31-kilodalton protein of Brucella abortus. Infect Immun 1991; 59: 2941–2947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stabel TJ, Mayfield JE, Morfitt DC, Wannemuehler MJ . Oral immunization of mice and swine with an attenuated Salmonella choleraesuis [delta cya-12 delta(crp-cdt)19] mutant containing a recombinant plasmid. Infect Immun 1993; 61: 610–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu DH, Hu XD, Cai H . A combined DNA vaccine encoding BCSP31, SOD, and L7/L12 confers high protection against Brucella abortus 2308 by inducing specific CTL responses. DNA Cell Biol 2007; 26: 435–443.

    Article  CAS  PubMed  Google Scholar 

  47. Yu DH, Li M, Hu XD, Cai H . A combined DNA vaccine enhances protective immunity against Mycobacterium tuberculosis and Brucella abortus in the presence of an IL-12 expression vector. Vaccine 2007; 25: 6744–6754.

    Article  CAS  PubMed  Google Scholar 

  48. Xu Y, Wang BC, Zhu YX . Identification of proteins expressed at extremely low level in Arabidopsis leaves. Biochem Biophys Res Commun 2007; 358: 808–812.

    Article  CAS  PubMed  Google Scholar 

  49. Miller SI, Ernst RK, Bader MW . LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol 2005; 3: 36–46.

    Article  CAS  PubMed  Google Scholar 

  50. Baldwin AS Jr . The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 1996; 14: 649–683.

    Article  CAS  PubMed  Google Scholar 

  51. Ghosh S, May MJ, Kopp EB . NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 1998; 16: 225–260.

    Article  CAS  PubMed  Google Scholar 

  52. Murphy TL, Cleveland MG, Kulesza P, Magram J, Murphy KM . Regulation of interleukin 12 p40 expression through an NF-kappa B half-site. Mol Cell Biol 1995; 15: 5258–5267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Joyce DA, Gimblett G, Steer JH . Targets of glucocorticoid action on TNF-alpha release by macrophages. Inflamm Res 2001; 50: 337–340.

    Article  CAS  PubMed  Google Scholar 

  54. Vanden Berghe W, de Bosscher K, Boone E, Plaisance S, Haegeman G . The nuclear factor-kappaB engages CBP/p300 and histone acetyltransferase activity for transcriptional activation of the interleukin-6 gene promoter. J Biol Chem 1999; 274: 32091–32098.

    Article  CAS  PubMed  Google Scholar 

  55. Johnson GL, Lapadat R . Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002; 298: 1911–1912.

    Article  CAS  PubMed  Google Scholar 

  56. Murtaza A, Kuchroo VK, Freeman GJ . Changes in the strength of co-stimulation through the B7/CD28 pathway alter functional T cell responses to altered peptide ligands. Int Immunol 1999; 11: 407–416.

    Article  CAS  PubMed  Google Scholar 

  57. Itano AA, McSorley SJ, Reinhardt RL, Ehst BD, Ingulli E, Rudensky AY et al. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity 2003; 19: 47–57.

    Article  CAS  PubMed  Google Scholar 

  58. Bell JK, Mullen GE, Leifer CA, Mazzoni A, Davies DR, Segal DM . Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol 2003; 24: 528–533.

    Article  CAS  PubMed  Google Scholar 

  59. Weiss DS, Takeda K, Akira S, Zychlinsky A, Moreno E . MyD88, but not toll-like receptors 4 and 2, is required for efficient clearance of Brucella abortus. Infect Immun 2005; 73: 5137–5143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Macedo GC, Magnani DM, Carvalho NB, Bruna-Romero O, Gazzinelli RT, Oliveira SC . Central role of MyD88-dependent dendritic cell maturation and proinflammatory cytokine production to control Brucella abortus infection. J Immunol 2008; 180: 1080–1087.

    Article  CAS  PubMed  Google Scholar 

  61. de Almeida LA, Carvalho NB, Oliveira FS, Lacerda TL, Vasconcelos AC, Nogueira L et al. MyD88 and STING signaling pathways are required for IRF3-mediated IFN-beta induction in response to Brucella abortus infection. PLoS ONE 2011; 6: e23135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Copin R, De Baetselier P, Carlier Y, Letesson JJ, Muraille E . MyD88-dependent activation of B220-CD11b+LY-6C+ dendritic cells during Brucella melitensis infection. J Immunol 2007; 178: 5182–5191.

    Article  CAS  PubMed  Google Scholar 

  63. Li S, Strelow A, Fontana EJ, Wesche H . IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci USA 2002; 99: 5567–5572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gomes MT, Campos PC, de Almeida LA, Oliveira FS, Costa MM, Marim FM et al. The role of innate immune signals in immunity to Brucella abortus. Front Cell Infect Microbiol 2012; 2: 130.

    PubMed  PubMed Central  Google Scholar 

  65. Oliveira FS, Carvalho NB, Brandao AP, Gomes MT, de Almeida LA, Oliveira SC . Interleukin-1 receptor-associated kinase 4 is essential for initial host control of Brucella abortus infection. Infect Immun 2011; 79: 4688–4695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Delaney JR, Mlodzik M . TGF-beta activated kinase-1: new insights into the diverse roles of TAK1 in development and immunity. Cell Cycle 2006; 5: 2852–2855.

    Article  CAS  PubMed  Google Scholar 

  67. Mendoza H, Campbell DG, Burness K, Hastie J, Ronkina N, Shim JH et al. Roles for TAB1 in regulating the IL-1-dependent phosphorylation of the TAB3 regulatory subunit and activity of the TAK1 complex. Biochem J 2008; 409: 711–722.

    Article  CAS  PubMed  Google Scholar 

  68. Akira S, Takeda K . Toll-like receptor signalling. Nat Rev Immunol 2004; 4: 499–511.

    Article  CAS  PubMed  Google Scholar 

  69. Moresco EM, LaVine D, Beutler B . Toll-like receptors. Curr Biol 2011; 21: R488–R493.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang CY, Bai N, Zhang ZH, Liang N, Dong L, Xiang R et al. TLR2 signaling subpathways regulate TLR9 signaling for the effective induction of IL-12 upon stimulation by heat-killed Brucella abortus. Cell Mol Immunol 2012; 9: 324–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yoshimura S, Bondeson J, Brennan FM, Foxwell BM, Feldmann M . Role of NFkappaB in antigen presentation and development of regulatory T cells elucidated by treatment of dendritic cells with the proteasome inhibitor PSI. Eur J Immunol 2001; 31: 1883–1893.

    Article  CAS  PubMed  Google Scholar 

  72. Ashall L, Horton CA, Nelson DE, Paszek P, Harper CV, Sillitoe K et al. Pulsatile stimulation determines timing and specificity of NF-kappaB-dependent transcription. Science 2009; 324: 242–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lawrence T, Gilroy DW, Colville-Nash PR, Willoughby DA . Possible new role for NF-kappaB in the resolution of inflammation. Nat Med 2001; 7: 1291–1297.

    Article  CAS  PubMed  Google Scholar 

  74. Egan LJ, Mays DC, Huntoon CJ, Bell MP, Pike MG, Sandborn WJ et al. Inhibition of interleukin-1-stimulated NF-kappaB RelA/p65 phosphorylation by mesalamine is accompanied by decreased transcriptional activity. J Biol Chem 1999; 274: 26448–26453.

    Article  CAS  PubMed  Google Scholar 

  75. Chen L, Fischle W, Verdin E, Greene WC . Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 2001; 293: 1653–1657.

    Article  CAS  Google Scholar 

  76. Sakurai H, Chiba H, Miyoshi H, Sugita T, Toriumi W . IkappaB kinases phosphorylate NF-kappaB p65 subunit on serine 536 in the transactivation domain. J Biol Chem 1999; 274: 30353–30356.

    Article  CAS  PubMed  Google Scholar 

  77. Sizemore N, Lerner N, Dombrowski N, Sakurai H, Stark GR . Distinct roles of the Ikappa B kinase alpha and beta subunits in liberating nuclear factor kappa B (NF-kappa B) from Ikappa B and in phosphorylating the p65 subunit of NF-kappa B. J Biol Chem 2002; 277: 3863–3869.

    Article  CAS  PubMed  Google Scholar 

  78. Saparov A, Wagner FH, Zheng R, Oliver JR, Maeda H, Hockett RD et al. Interleukin-2 expression by a subpopulation of primary T cells is linked to enhanced memory/effector function. Immunity 1999; 11: 271–280.

    Article  CAS  PubMed  Google Scholar 

  79. Delpino MV, Marchesini MI, Estein SM, Comerci DJ, Cassataro J, Fossati CA et al. A bile salt hydrolase of Brucella abortus contributes to the establishment of a successful infection through the oral route in mice. Infect Immun 2007; 75: 299–305.

    Article  CAS  PubMed  Google Scholar 

  80. Pasquevich KA, Garcia Samartino C, Coria LM, Estein SM, Zwerdling A, Ibanez AE et al. The protein moiety of Brucella abortus outer membrane protein 16 is a new bacterial pathogen-associated molecular pattern that activates dendritic cells in vivo, induces a Th1 immune response, and is a promising self-adjuvanting vaccine against systemic and oral acquired brucellosis. J Immunol 2010; 184: 5200–5212.

    Article  CAS  PubMed  Google Scholar 

  81. Pasquevich KA, Ibanez AE, Coria LM, Garcia Samartino C, Estein SM, Zwerdling A et al. An oral vaccine based on U-Omp19 induces protection against B. abortus mucosal challenge by inducing an adaptive IL-17 immune response in mice. PLoS ONE 2011; 6: e16203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Baldwin CL, Parent M . Fundamentals of host immune response against Brucella abortus: what the mouse model has revealed about control of infection. Vet Microbiol 2002; 90: 367–382.

    Article  CAS  PubMed  Google Scholar 

  83. Murphy EA, Sathiyaseelan J, Parent MA, Zou B, Baldwin CL . Interferon-gamma is crucial for surviving a Brucella abortus infection in both resistant C57BL/6 and susceptible BALB/c mice. Immunology 2001; 103: 511–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhan Y, Cheers C . Endogenous gamma interferon mediates resistance to Brucella abortus infection. Infect Immun 1993; 61: 4899–4901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Skendros P, Pappas G, Boura P . Cell-mediated immunity in human brucellosis. Microbes Infect 2011; 13: 134–142.

    Article  CAS  PubMed  Google Scholar 

  86. Giambartolomei GH, Zwerdling A, Cassataro J, Bruno L, Fossati CA, Philipp MT . Lipoproteins, not lipopolysaccharide, are the key mediators of the proinflammatory response elicited by heat-killed Brucella abortus. J Immunol 2004; 173: 4635–4642.

    Article  CAS  PubMed  Google Scholar 

  87. Zwerdling A, Delpino MV, Barrionuevo P, Cassataro J, Pasquevich KA, Garcia Samartino C et al. Brucella lipoproteins mimic dendritic cell maturation induced by Brucella abortus. Microbes Infect 2008; 10: 1346–1354.

    Article  CAS  PubMed  Google Scholar 

  88. Campos MA, Rosinha GM, Almeida IC, Salgueiro XS, Jarvis BW, Splitter GA et al. Role of Toll-like receptor 4 in induction of cell-mediated immunity and resistance to Brucella abortus infection in mice. Infect Immun 2004; 72: 176–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Barquero-Calvo E, Chaves-Olarte E, Weiss DS, Guzman-Verri C, Chacon-Diaz C, Rucavado A et al. Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS ONE 2007; 2: e631.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Pei J, Turse JE, Ficht TA . Evidence of Brucella abortus OPS dictating uptake and restricting NF-kappaB activation in murine macrophages. Microbes Infect 2008; 10: 582–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Huang LY, Reis e Sousa C, Itoh Y, Inman J, Scott DE . IL-12 induction by a TH1-inducing adjuvant in vivo: dendritic cell subsets and regulation by IL-10. J Immunol 2001; 167: 1423–1430.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Chen Zhang for the lentivirus-based shRNA system.

Author information

Authors and Affiliations

Authors

Additional information

Supplementary Information accompanies the paper on Cellular & Molecular Immunology's website. (http://www.nature.com/cmi).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JY., Liu, Y., Gao, XX. et al. TLR2 and TLR4 signaling pathways are required for recombinant Brucella abortus BCSP31-induced cytokine production, functional upregulation of mouse macrophages, and the Th1 immune response in vivo and in vitro. Cell Mol Immunol 11, 477–494 (2014). https://doi.org/10.1038/cmi.2014.28

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.28

Keywords

This article is cited by

Search

Quick links