Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

A MyD88–JAK1–STAT1 complex directly induces SOCS-1 expression in macrophages infected with Group A Streptococcus

Abstract

Some pathogens can use host suppressor of cytokine signaling 1 (SOCS-1), an important negative-feedback molecule, as the main mode of immune evasion. Here we found that group A Streptococcus (GAS) is capable of inducing SOCS-1 expression in RAW264.7 and BMDM macrophages. IFN-β plays a role in GAS-induced SOCS-1 expression in macrophages following the induction of cytokine expression by GAS, representing the classical pathway of SOCS-1 expression. However, GAS also induced STAT1 activation and SOCS-1 expression when GAS-infected cells were incubated with anti-IFN-β monoclonal antibody in this study. Moreover, upon comparing TLR4−/− BMDM macrophages with wild-type (WT) cells, we found that TLR4 also plays an essential role in the induction of SOCS-1. MyD88, which is an adaptor protein for TLR4, contributes to STAT1 activation and phosphorylation by forming a complex with Janus kinase 1 (JAK1) and signal transducer and activator of transcription 1 (STAT1) in macrophages. GAS-stimulated expression of STAT1 was severely impaired in MyD88−/− macrophages, whereas expression of JAK1 was unaffected, suggesting that MyD88 was involved in STAT1 expression and phosphorylation. Together, these data demonstrated that in addition to IFN-β signaling and MyD88 complex formation, JAK1 and STAT1 act in a novel pathway to directly induce SOCS-1 expression in GAS-infected macrophages, which may be more conducive to rapid bacterial infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Miettinen M, Lehtonen A, Julkunen I, Matikainen S . Lactobacilli and Streptococci activate NF-kappa B and STAT signaling pathways in human macrophages. J Immunol 2000; 164: 3733–3740.

    Article  CAS  PubMed  Google Scholar 

  2. Gratz N, Hartweger H, Matt U, Kratochvill F, Janos M, Sigel S et al. Type I interferon production induced by Streptococcus pyogenes-derived nucleic acids is required for host protection. PLoS Pathog 2011; 7: e1001345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gratz N, Siller M, Schaljo B, Pirzada ZA, Gattermeier I, Vojtek I et al. Group A streptococcus activates type I interferon production and MyD88-dependent signaling without involvement of TLR2, TLR4, and TLR9. J Biol Chem 2008; 283: 19879–19887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bisno AL, Brito MO, Collins CM . Molecular basis of group A streptococcal virulence. Lancet Infect Dis 2003; 3: 191–200.

    Article  CAS  PubMed  Google Scholar 

  5. Chhatwal GS, McMillan DJ . Uncovering the mysteries of invasive streptococcal diseases. Trends Mol Med 2005; 11: 152–155.

    Article  CAS  PubMed  Google Scholar 

  6. Ryo A, Suizu F, Yoshida Y, Perrem K, Liou YC, Wulf G et al. Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol Cell 2003; 12: 1413–1426.

    Article  CAS  PubMed  Google Scholar 

  7. Maine GN, Mao X, Komarck CM, Burstein E . COMMD1 promotes the ubiquitination of NF-kappaB subunits through a Cullin-containing ubiquitin ligase. EMBO J 2007; 26: 436–447.

    Article  CAS  PubMed  Google Scholar 

  8. Kubo M, Hanada T, Yoshimura A . Suppressors of cytokine signaling and immunity. Nat Immunol 2003; 4: 1169–1176.

    Article  CAS  PubMed  Google Scholar 

  9. Zimmermann S, Murray PJ, Heeg K, Dalpke AH . Induction of suppressor of cytokine signaling-1 by Toxoplasma gondii contributes to immune evasion in macrophages by blocking IFN-gamma signaling. J Immunol 2006; 176: 1840–1847.

    Article  CAS  PubMed  Google Scholar 

  10. Mun HS, Aosai F, Norose K, Piao LX, Fang H, Akira S et al. Toll-like receptor 4 mediates tolerance in macrophages stimulated with Toxoplasma gondii-derived heat shock protein 70. Infect Immun 2005; 73: 4634–4642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Manca C, Tsenova L, Freeman S, Barczak AK, Tovey M, Murray PJ et al. Hypervirulent M. tuberculosis W/Beijing strains upregulate type I IFNs and increase expression of negative regulators of the Jak–Stat pathway. J Interferon Cytokine Res 2005; 25: 694–701.

    Article  CAS  PubMed  Google Scholar 

  12. Ekchariyawat P, Pudla S, Limposuwan K, Arjcharoen S, Sirisinha S, Utaisincharoen P . Burkholderia pseudomallei-induced expression of suppressor of cytokine signaling 3 and cytokine-inducible src homology 2-containing protein in mouse macrophages: a possible mechanism for suppression of the response to gamma interferon stimulation. Infect Immun 2005; 73: 7332–7339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Frey KG, Ahmed CM, Dabelic R, Jager LD, Noon-Song EN, Haider SM et al. HSV-1-induced SOCS-1 expression in keratinocytes: use of a SOCS-1 antagonist to block a novel mechanism of viral immune evasion. J Immunol 2009; 183: 1253–1262.

    Article  CAS  PubMed  Google Scholar 

  14. Waiboci LW, Ahmed CM, Mujtaba MG, Flowers LO, Martin JP, Haider MI et al. Both the suppressor of cytokine signaling 1 (SOCS-1) kinase inhibitory region and SOCS-1 mimetic bind to JAK2 autophosphorylation site: implications for the development of a SOCS-1 antagonist. J Immunol 2007; 178: 5058–5068.

    Article  CAS  PubMed  Google Scholar 

  15. Naka T, Fujimoto M, Tsutsui H, Yoshimura A . Negative regulation of cytokine and TLR signalings by SOCS and others. Adv Immunol 2005; 87: 61–122.

    Article  CAS  PubMed  Google Scholar 

  16. Qin H, Wilson CA, Lee SJ, Benveniste EN . IFN-beta-induced SOCS-1 negatively regulates CD40 gene expression in macrophages and microglia. FASEB J 2006; 20: 985–987.

    Article  CAS  PubMed  Google Scholar 

  17. Lesinski GB, Zimmerer JM, Kreiner M, Trefry J, Bill MA, Young GS et al. Modulation of SOCS protein expression influences the interferon responsiveness of human melanoma cells. BMC Cancer 2010; 10: 142.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nakagawa R, Naka T, Tsutsui H, Fujimoto M, Kimura A, Abe T et al. SOCS-1 participates in negative regulation of LPS responses. Immunity 2002; 17: 677–687.

    Article  CAS  PubMed  Google Scholar 

  19. Kinjyo I, Hanada T, Inagaki-Ohara K, Mori H, Aki D, Ohishi M et al. SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity 2002; 17: 583–591.

    Article  CAS  PubMed  Google Scholar 

  20. Imai K, Kurita-Ochiai T, Ochiai K . Mycobacterium bovis bacillus Calmette-Guerin infection promotes SOCS induction and inhibits IFN-gamma-stimulated JAK/STAT signaling in J774 macrophages. FEMS Immunol Med Microbiol 2003; 39: 173–180.

    Article  CAS  PubMed  Google Scholar 

  21. Naka T, Narazaki M, Hirata M, Matsumoto T, Minamoto S, Aono A et al. Structure and function of a new STAT-induced STAT inhibitor. Nature 1997; 387: 924–929.

    Article  CAS  PubMed  Google Scholar 

  22. Cunningham MW . Pathogenesis of group A streptococcal infections and their sequelae. Adv Exp Med Biol 2008; 609: 29–42.

    Article  CAS  PubMed  Google Scholar 

  23. Baetz A, Frey M, Heeg K, Dalpke AH . Suppressor of cytokine signaling (SOCS) proteins indirectly regulate Toll-like receptor signaling in innate immune cells. J Biol Chem 2004; 279: 54708–54715.

    Article  CAS  PubMed  Google Scholar 

  24. Ding Y, Chen D, Tarcsafalvi A, Su R, Qin L, Bromberg JS . Suppressor of cytokine signaling 1 inhibits IL-10-mediated immune responses. J Immunol 2003; 170: 1383–1391.

    Article  CAS  PubMed  Google Scholar 

  25. Sporri B, Kovanen PE, Sasaki A, Yoshimura A, Leonard WJ . JAB/SOCS1/SSI-1 is an interleukin-2-induced inhibitor of IL-2 signaling. Blood 2001; 97: 221–226.

    Article  CAS  PubMed  Google Scholar 

  26. Stevenson NJ, Haan S, McClurg AE, McGrattan MJ, Armstrong MA, Heinrich PC et al. The chemoattractants, IL-8 and formyl-methionyl-leucyl-phenylalanine, regulate granulocyte colony-stimulating factor signaling by inducing suppressor of cytokine signaling-1 expression. J Immunol 2004; 173: 3243–3249.

    Article  CAS  PubMed  Google Scholar 

  27. Bhattacharyya S, Zhao Y, Kay TW, Muglia LJ . Glucocorticoids target suppressor of cytokine signaling 1 (SOCS1) and type 1 interferons to regulate Toll-like receptor-induced STAT1 activation. Proc Natl Acad Sci USA 2011; 108: 9554–9559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rhee SH, Jones BW, Toshchakov V, Vogel SN, Fenton MJ . Toll-like receptors 2 and 4 activate STAT1 serine phosphorylation by distinct mechanisms in macrophages. J Biol Chem 2003; 278: 22506–22512.

    Article  CAS  PubMed  Google Scholar 

  29. Kimura A, Naka T, Muta T, Takeuchi O, Akira S, Kawase I et al. Suppressor of cytokine signaling-1 selectively inhibits LPS-induced IL-6 production by regulating JAK–STAT. Proc Natl Acad Sci USA 2005; 102: 17089–17094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thulin P, Johansson L, Low DE, Gan BS, Kotb M, McGeer A et al. Viable group A streptococci in macrophages during acute soft tissue infection. PLoS Med 2006; 3: e53.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cunningham MW . Pathogenesis of group A streptococcal infections. Clin Microbiol Rev 2000; 13: 470–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ringdahl U, Sjobring U . Analysis of plasminogen-binding M proteins of Streptococcus pyogenes. Methods 2000; 21: 143–150.

    Article  CAS  PubMed  Google Scholar 

  33. Pandiripally V, Gregory E, Cue D . Acquisition of regulators of complement activation by Streptococcus pyogenes serotype M1. Infect Immun 2002; 70: 6206–6214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Terao Y, Kawabata S, Kunitomo E, Murakami J, Nakagawa I, Hamada S . Fba, a novel fibronectin-binding protein from Streptococcus pyogenes, promotes bacterial entry into epithelial cells, and the fba gene is positively transcribed under the Mga regulator. Mol Microbiol 2001; 42: 75–86.

    Article  CAS  PubMed  Google Scholar 

  35. Lamont RJ, Gil S, Demuth DR, Malamud D, Rosan B . Molecules of Streptococcus gordonii that bind to Porphyromonas gingivalis. Microbiology 1994; 140( Pt 4): 867–872.

    Article  CAS  PubMed  Google Scholar 

  36. Lyon WR, Caparon MG . Role for serine protease HtrA (DegP) of Streptococcus pyogenes in the biogenesis of virulence factors SpeB and the hemolysin streptolysin S. Infect Immun 2004; 72: 1618–1625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nobbs AH, Lamont RJ, Jenkinson HF . Streptococcus adherence and colonization. Microbiol Mol Biol Rev 2009; 73: 407–450, Table of Contents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Staali L, Morgelin M, Bjorck L, Tapper H . Streptococcus pyogenes expressing M and M-like surface proteins are phagocytosed but survive inside human neutrophils. Cell Microbiol 2003; 5: 253–265.

    Article  CAS  PubMed  Google Scholar 

  39. Nakagawa I, Amano A, Mizushima N, Yamamoto A, Yamaguchi H, Kamimoto T et al. Autophagy defends cells against invading group A Streptococcus. Science 2004; 306: 1037–1040.

    Article  CAS  PubMed  Google Scholar 

  40. Hakansson A, Bentley CC, Shakhnovic EA, Wessels MR . Cytolysin-dependent evasion of lysosomal killing. Proc Natl Acad Sci USA 2005; 102: 5192–5197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T et al. Loss of the autophagy protein Atg16 L1 enhances endotoxin-induced IL-1beta production. Nature 2008; 456: 264–268.

    Article  CAS  PubMed  Google Scholar 

  42. Elliott J, Johnston JA . SOCS: role in inflammation, allergy and homeostasis. Trends Immunol 2004; 25: 434–440.

    Article  CAS  PubMed  Google Scholar 

  43. Alexander WS, Hilton DJ . The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Annu Rev Immunol 2004; 22: 503–529.

    Article  CAS  PubMed  Google Scholar 

  44. Ilangumaran S, Ramanathan S, Rottapel R . Regulation of the immune system by SOCS family adaptor proteins. Semin Immunol 2004; 16: 351–365.

    Article  CAS  PubMed  Google Scholar 

  45. Beutler B . 2004. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 2004; 430: 257–263.

    Article  CAS  PubMed  Google Scholar 

  46. Kawai T, Akira S . Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med 2007; 13: 460–469.

    Article  CAS  PubMed  Google Scholar 

  47. Kinjyo I, Hanada T, Inagaki-Ohara K, Mori H, Aki D, Ohishi M et al. SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity 2002; 17: 583–591.

    Article  CAS  PubMed  Google Scholar 

  48. Nakagawa R, Naka T, Tsutsui H, Fujimoto M, Kimura A, Abe T et al. SOCS-1 participates in negative regulation of LPS responses. Immunity 2002; 17: 677–687.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

All authors declare that they have no conflict of interests.

Additional information

Supplementary Information accompanies the paper on Cellular & Molecular Immunology's website. (http://www.nature.com/cmi).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Ma, C., Wang, H. et al. A MyD88–JAK1–STAT1 complex directly induces SOCS-1 expression in macrophages infected with Group A Streptococcus. Cell Mol Immunol 12, 373–383 (2015). https://doi.org/10.1038/cmi.2014.107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.107

Keywords

This article is cited by

Search

Quick links