Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

An unbalanced PD-L1/CD86 ratio in CD14++CD16+ monocytes is correlated with HCV viremia during chronic HCV infection

Abstract

Circulating monocyte subsets with distinct functions play important roles in hepatitis C virus (HCV) infection. However, the mechanisms have not been well studied. In this study, we analyzed the distributions and phenotypic characteristics of three circulating monocyte subsets—CD14++CD16, CD14++CD16+ and CD14+/dimCD16+—in chronic HCV-infected patients, HCV spontaneous resolvers and healthy controls, and we evaluated the possible link between HCV viremia and disease progression. Our results indicated that the frequency of the CD14++CD16+ monocyte subset was decreased, and negatively correlated with HCV RNA and core antigen levels during chronic HCV infection. PD-L1 expression and the PD-L1/CD86 ratio in CD14++CD16+ monocytes were higher during chronic HCV infection than in spontaneous HCV resolvers and healthy controls. The PD-L1/CD86 ratio positively correlated with HCV viral load and core antigen levels. Finally, PD-L1 was significantly increased, while cytokine secretions were dramatically decreased upon Toll-like receptor (TLR) ligand binding and HCV JFH-1stimulation. These findings indicates the compromised immune status of the CD14++CD16+ monocytes during chronic HCV infection and provides new insights into the specific role of the CD14++CD16+ monocytes and their significance in chronic HCV infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bowen DG, Walker CM . The origin of quasispecies: cause or consequence of chronic hepatitis C viral infection? J Hepatol 2005; 42: 408–417.

    Article  CAS  PubMed  Google Scholar 

  2. Bowen DG, Walker CM . Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature 2005; 436: 946–952.

    Article  CAS  PubMed  Google Scholar 

  3. Hahn YS . Subversion of immune responses by hepatitis C virus: immunomodulatory strategies beyond evasion? Curr Opin Immunol 2003; 15: 443–449.

    Article  CAS  PubMed  Google Scholar 

  4. Hoofnagle JH . Hepatitis C: the clinical spectrum of disease. Hepatology 1997; 26: 15S–20S.

    Article  CAS  PubMed  Google Scholar 

  5. Claassen MA, Janssen HL, Boonstra A . Role of T cell immunity in hepatitis C virus infections. Curr Opin Virol 2013; 3: 461–467.

    Article  CAS  PubMed  Google Scholar 

  6. Liu B, Woltman AM, Janssen HL, Boonstra A . Modulation of dendritic cell function by persistent viruses. J Leukoc Biol 2009; 85: 205–214.

    Article  CAS  PubMed  Google Scholar 

  7. Tacke RS, Tosello-Trampont A, Nguyen V, Mullins DW, Hahn YS . Extracellular hepatitis C virus core protein activates STAT3 in human monocytes/macrophages/dendritic cells via an IL-6 autocrine pathway. J Biol Chem 2011; 286: 10847–10855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cros J, Cagnard N, Woollard K, Patey N, Zhang SY, Senechal B et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 2010; 33: 375–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van de Veerdonk FL, Netea MG . Diversity: a hallmark of monocyte society. Immunity 2010; 33: 289–291.

    Article  CAS  PubMed  Google Scholar 

  10. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN et al. Nomenclature of monocytes and dendritic cells in blood. Blood 2010; 116: e74–e80.

    Article  CAS  PubMed  Google Scholar 

  11. Wedemeyer H, He XS, Nascimbeni M, Davis AR, Greenberg HB, Hoofnagle JH et al. Impaired effector function of hepatitis C virus-specific CD8+ T cells in chronic hepatitis C virus infection. J Immunol 2002; 169: 3447–3458.

    Article  CAS  PubMed  Google Scholar 

  12. Gruener NH, Lechner F, Jung MC, Diepolder H, Gerlach T, Lauer G et al. Sustained dysfunction of antiviral CD8+ T lymphocytes after infection with hepatitis C virus. J Virol 2001; 75: 5550–5558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang X, Venet F, Wang YL, Lepape A, Yuan Z, Chen Y et al. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc Natl Acad Sci USA 2009; 106: 6303–6308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Muhlbauer M, Fleck M, Schutz C, Weiss T, Froh M, Blank C et al. PD-L1 is induced in hepatocytes by viral infection and by interferon-alpha and -gamma and mediates T cell apoptosis. J Hepatol 2006; 45: 520–528.

    Article  PubMed  CAS  Google Scholar 

  15. Yao S, Wang S, Zhu Y, Luo L, Zhu G, Flies S et al. PD-1 on dendritic cells impedes innate immunity against bacterial infection. Blood 2009; 113: 5811–5818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shen T, Chen X, Chen Y, Xu Q, Lu F, Liu S . Increased PD-L1 expression and PD-L1/CD86 ratio on dendritic cells were associated with impaired dendritic cells function in HCV infection. J Med Virol 2010; 82: 1152–1159.

    Article  CAS  PubMed  Google Scholar 

  17. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K . Development of monocytes, macrophages, and dendritic cells. Science 2010; 327: 656–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ziegler-Heitbrock L . The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol 2007; 81: 584–592.

    Article  CAS  PubMed  Google Scholar 

  19. Moniuszko M, Bodzenta-Lukaszyk A, Kowal K, Lenczewska D, Dabrowska M . Enhanced frequencies of CD14++CD16+, but not CD14+CD16+, peripheral blood monocytes in severe asthmatic patients. Clin Immunol 2009; 130: 338–346.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang JY, Zou ZS, Huang A, Zhang Z, Fu JL, Xu XS et al. Hyper-activated pro-inflammatory CD16 monocytes correlate with the severity of liver injury and fibrosis in patients with chronic hepatitis B. PLoS ONE 2011; 6: e17484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Han J, Wang B, Han N, Zhao Y, Song C, Feng X et al. CD14highCD16+ rather than CD14lowCD16+ monocytes correlate with disease progression in chronic HIV-infected patients. J Acquir Immune Defic Syndr 2009; 52: 553–559.

    Article  CAS  PubMed  Google Scholar 

  22. Auffray C, Sieweke MH, Geissmann F . Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 2009; 27: 669–692.

    Article  CAS  PubMed  Google Scholar 

  23. Belge KU, Dayyani F, Horelt A, Siedlar M, Frankenberger M, Frankenberger B et al. The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J Immunol 2002; 168: 3536–3542.

    Article  CAS  PubMed  Google Scholar 

  24. Hijdra D, Vorselaars AD, Grutters JC, Claessen AM, Rijkers GT . Phenotypic characterization of human intermediate monocytes. Front Immunol 2013; 4: 339.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Tacke F, Randolph GJ . Migratory fate and differentiation of blood monocyte subsets. Immunobiology 2006; 211: 609–618.

    Article  CAS  PubMed  Google Scholar 

  26. Liaskou E, Zimmermann HW, Li KK, Oo YH, Suresh S, Stamataki Z et al. Monocyte subsets in human liver disease show distinct phenotypic and functional characteristics. Hepatology 2012; 57: 385–398.

    Article  PubMed  CAS  Google Scholar 

  27. Skrzeczynska-Moncznik J, Bzowska M, Loseke S, Grage-Griebenow E, Zembala M, Pryjma J . Peripheral blood CD14high CD16+ monocytes are main producers of IL-10. Scand J Immunol 2008; 67: 152–159.

    Article  CAS  PubMed  Google Scholar 

  28. Wong KL, Tai JJ, Wong WC, Han H, Sem X, Yeap WH et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood 2011; 118: e16–e31.

    Article  CAS  PubMed  Google Scholar 

  29. Passacquale G, Vamadevan P, Pereira L, Hamid C, Corrigall V, Ferro A . Monocyte-platelet interaction induces a pro-inflammatory phenotype in circulating monocytes. PLoS ONE 2011; 6: e25595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000; 192: 1027–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Okazaki T, Honjo T . The PD-1–PD-L pathway in immunological tolerance. Trends Immunol 2006; 27: 195–201.

    Article  CAS  PubMed  Google Scholar 

  32. Wang JM, Shi L, Ma CJ, Ji XJ, Ying RS, Wu XY et al. Differential regulation of interleukin-12 (IL-12)/IL-23 by Tim-3 drives TH17 cell development during hepatitis C virus infection. J Virol 2013; 87: 4372–4383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Watanabe T, Bertoletti A, Tanoto TA . PD-1/PD-L1 pathway and T-cell exhaustion in chronic hepatitis virus infection. J Viral Hepat 2010; 17: 453–458.

    Article  CAS  PubMed  Google Scholar 

  34. Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 2006; 443: 350–354.

    Article  CAS  PubMed  Google Scholar 

  35. Rodig N, Ryan T, Allen JA, Pang H, Grabie N, Chernova T et al. Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ T cell activation and cytolysis. Eur J Immunol 2003; 33: 3117–3126.

    Article  CAS  PubMed  Google Scholar 

  36. Jeong HY, Lee YJ, Seo SK, Lee SW, Park SJ, Lee JN et al. Blocking of monocyte-associated B7-H1 (CD274) enhances HCV-specific T cell immunity in chronic hepatitis C infection. J Leukoc Biol 2008; 83: 755–764.

    Article  CAS  PubMed  Google Scholar 

  37. Abeles RD, McPhail MJ, Sowter D, Antoniades CG, Vergis N, Vijay GK et al. CD14, CD16 and HLA-DR reliably identifies human monocytes and their subsets in the context of pathologically reduced HLA-DR expression by CD14hi/CD16neg monocytes: expansion of CD14hi/CD16pos and contraction of CD14lo/CD16pos monocytes in acute liver failure. Cytometry A 2012; 81: 823–834.

    Article  PubMed  CAS  Google Scholar 

  38. Villacres MC, Literat O, DeGiacomo M, Du W, Frederick T, Kovacs A . Defective response to Toll-like receptor 3 and 4 ligands by activated monocytes in chronic hepatitis C virus infection. J Viral Hepat 2008; 15: 137–144.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu BS, Groothuismink ZM, Janssen HL, Boonstra A . Role for IL-10 in inducing functional impairment of monocytes upon TLR4 ligation in patients with chronic HCV infections. J Leukoc Biol 2011; 89: 981–988.

    Article  CAS  PubMed  Google Scholar 

  40. Martin-Blondel G, Gales A, Bernad J, Cuzin L, Delobel P, Barange K et al. Low interleukin-10 production by monocytes of patients with a self-limiting hepatitis C virus infection. J Viral Hepat 2009; 16: 485–491.

    Article  CAS  PubMed  Google Scholar 

  41. Peng C, Liu BS, de Knegt RJ, Janssen HL, Boonstra A . The response to TLR ligation of human CD16+CD14 monocytes is weakly modulated as a consequence of persistent infection with the hepatitis C virus. Mol Immunol 2011; 48: 1505–1511.

    Article  CAS  PubMed  Google Scholar 

  42. Dong H, Zhu G, Tamada K, Chen L . B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 1999; 5: 1365–1369.

    Article  CAS  PubMed  Google Scholar 

  43. Hosiawa KA, Wang H, DeVries ME, Garcia B, Liu W, Zhou D et al. CD80/CD86 costimulation regulates acute vascular rejection. J Immunol 2005; 175: 6197–6204.

    Article  CAS  PubMed  Google Scholar 

  44. Nolan A, Kobayashi H, Naveed B, Kelly A, Hoshino Y, Hoshino S et al. Differential role for CD80 and CD86 in the regulation of the innate immune response in murine polymicrobial sepsis. PLoS ONE 2009; 4: e6600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Tokita D, Mazariegos GV, Zahorchak AF, Chien N, Abe M, Raimondi G et al. High PD-L1/CD86 ratio on plasmacytoid dendritic cells correlates with elevated T-regulatory cells in liver transplant tolerance. Transplantation 2008; 85: 369–377.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science of China (81271826, 31100126), the National Science Foundation of Beijing (7122108), SKLID development grant (2011SKLID207) and grants from the National S&T Major Project for Infectious Diseases (2012ZX10002003 and 2012ZX10002005).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Additional information

Supplementary Information accompanies the paper on Cellular & Molecular Immunology's website. (http://www.nature.com/cmi).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, J., Liang, H., Xu, C. et al. An unbalanced PD-L1/CD86 ratio in CD14++CD16+ monocytes is correlated with HCV viremia during chronic HCV infection. Cell Mol Immunol 11, 294–304 (2014). https://doi.org/10.1038/cmi.2013.70

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2013.70

Keywords

This article is cited by

Search

Quick links