Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Thrombospondin 1 activates the macrophage Toll-like receptor 4 pathway

Abstract

Previously, we demonstrated that macrophages from thrombospondin 1 (TSP1)-deficient mice have a reduced inflammatory phenotype, suggesting that TSP1 plays a role in macrophage activation. In this study, we determined how TSP1 regulates macrophage function. We found that recombinant or purified platelet human TSP1 treatment stimulated tumor-necrosis factor (TNF)-α expression in bone marrow-derived macrophages in a time- and dose-dependent manner. Toll-like receptor 4 (TLR4) expression (at the mRNA and protein levels) and nuclear factor-kappaB (NF-κB) activity were also stimulated by TSP1 treatment. The TSP1-mediated increase in TNF-α production was abolished in TLR4-deficient macrophages, suggesting that TSP1 activates macrophages through a TLR4-dependent pathway. TSP1 also stimulated TLR4 activation in macrophages in vivo. Furthermore, TSP1-mediated macrophage activation was attenuated by using a peptide or an antibody to block the association between TSP1 and CD36. Taken together, these data suggest that the stimulation of the macrophage TLR4 pathway by TSP1 is partially mediated by the interaction of TSP1 with its receptor, CD36.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Lawler JW, Slayter HS, Coligan JE . Isolation and characterization of a high molecular weight glycoprotein from human blood platelets. J Biol Chem 1978; 253: 8609–8616.

    CAS  PubMed  Google Scholar 

  2. Baenziger NL, Brodie GN, Majerus PW . A thrombin-sensitive protein of human platelet membranes. Proc Natl Acad Sci USA 1971; 68: 240–243.

    Article  CAS  PubMed  Google Scholar 

  3. Donoviel DB, Amacher SL, Judge KW, Bornstein P . Thrombospondin gene expression is associated with mitogenesis in 3T3 cells: induction by basic fibroblast growth factor. J Cell Physiol 1990; 145: 16–23.

    Article  CAS  PubMed  Google Scholar 

  4. Phelan MW, Forman LW, Perrine SP, Faller DV . Hypoxia increases thrombospondin-1 transcript and protein in cultured endothelial cells. J Lab Clin Med 1998; 132: 519–529.

    Article  CAS  PubMed  Google Scholar 

  5. Bornstein P . Thrombospondins as matricellular modulators of cell function. J Clin Invest 2001; 107: 929–934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hugo C, Pichler R, Meek R, Gordon K, Kyriakides T, Floege J et al. Thrombospondin 1 is expressed by proliferating mesangial cells and is up-regulated by PDGF and bFGF in vivo. Kidney Int 1995; 48: 1846–1856.

    Article  CAS  PubMed  Google Scholar 

  7. Ramis JM, Franssen-van Hal NL, Kramer E, Llado I, Bouillaud F, Palou A et al. Carboxypeptidase E and thrombospondin-1 are differently expressed in subcutaneous and visceral fat of obese subjects. Cell Mol Life Sci 2002; 59: 1960–1971.

    Article  CAS  PubMed  Google Scholar 

  8. Murphy-Ullrich JE, Mosher DF . Interactions of thrombospondin with endothelial cells: receptor-mediated binding and degradation. J Cell Biol 1987; 105: 1603–1611.

    Article  CAS  PubMed  Google Scholar 

  9. Taraboletti G, Roberts DD, Liotta LA . Thrombospondin-induced tumor cell migration: haptotaxis and chemotaxis are mediated by different molecular domains. J Cell Biol 1987; 105: 2409–2415.

    Article  CAS  PubMed  Google Scholar 

  10. Mikhailenko I, Krylov D, Argraves KM, Roberts DD, Liau G, Strickland DK . Cellular internalization and degradation of thrombospondin-1 is mediated by the amino-terminal heparin binding domain (HBD). High affinity interaction of dimeric HBD with the low density lipoprotein receptor-related protein. J Biol Chem 1997; 272: 6784–6791.

    Article  CAS  PubMed  Google Scholar 

  11. Wang S, Herndon ME, Ranganathan S, Godyna S, Lawler J, Argraves WS et al. Internalization but not binding of thrombospondin-1 to low density lipoprotein receptor-related protein-1 requires heparan sulfate proteoglycans. J Cell Biochem 2004; 91: 766–776.

    Article  CAS  PubMed  Google Scholar 

  12. Frazier WA, Gao AG, Dimitry J, Chung J, Brown EJ, Lindberg FP et al. The thrombospondin receptor integrin-associated protein (CD47) functionally couples to heterotrimeric Gi. J Biol Chem 1999; 274: 8554–8560.

    Article  CAS  PubMed  Google Scholar 

  13. Lawler J, Weinstein R, Hynes RO . Cell attachment to thrombospondin: the role of ARG–GLY–ASP, calcium, and integrin receptors. J Cell Biol 1988; 107( 6 Pt 1): 2351–2361.

    Article  CAS  PubMed  Google Scholar 

  14. Gao AG, Lindberg FP, Finn MB, Blystone SD, Brown EJ, Frazier WA . Integrin-associated protein is a receptor for the C-terminal domain of thrombospondin. J Biol Chem 1996; 271: 21–24.

    Article  CAS  PubMed  Google Scholar 

  15. Chandrasekaran L, He CZ, Al-Barazi H, Krutzsch HC, Iruela-Arispe ML, Roberts DD . Cell contact-dependent activation of alpha3beta1 integrin modulates endothelial cell responses to thrombospondin-1. Mol Biol Cell 2000; 11: 2885–2900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goicoechea S, Orr AW, Pallero MA, Eggleton P, Murphy-Ullrich JE . Thrombospondin mediates focal adhesion disassembly through interactions with cell surface calreticulin. J Biol Chem 2000; 275: 36358–36368.

    Article  CAS  PubMed  Google Scholar 

  17. Jimenez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N . Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 2000; 6: 41–48.

    Article  CAS  PubMed  Google Scholar 

  18. Voros G, Maquoi E, Demeulemeester D, Clerx N, Collen D, Lijnen HR . Modulation of angiogenesis during adipose tissue development in murine models of obesity. Endocrinology 2005; 146: 4545–4554.

    Article  CAS  PubMed  Google Scholar 

  19. Varma V, Yao-Borengasser A, Bodles AM, Rasouli N, Phanavanh B, Nolen GT et al. Thrombospondin-1 is an adipokine associated with obesity, adipose inflammation, and insulin resistance. Diabetes 2008; 57: 432–439.

    Article  CAS  PubMed  Google Scholar 

  20. Li Y, Tong X, Rumala C, Clemons K, Wang S . Thrombospondin1 deficiency reduces obesity-associated inflammation and improves insulin sensitivity in a diet-induced obese mouse model. PLoS ONE 2011; 6: e26656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nguyen MT, Favelyukis S, Nguyen AK, Reichart D, Scott PA, Jenn A et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem 2007; 282: 35279–35292.

    Article  CAS  PubMed  Google Scholar 

  22. Mwaikambo BR, Sennlaub F, Ong H, Chemtob S, Hardy P . Activation of CD36 inhibits and induces regression of inflammatory corneal neovascularization. Invest Ophthalmol Vis Sci 2006; 47: 4356–4364.

    Article  PubMed  Google Scholar 

  23. Mwaikambo BR, Yang C, Chemtob S, Hardy P . Hypoxia up-regulates CD36 expression and function via hypoxia-inducible factor-1- and phosphatidylinositol 3-kinase-dependent mechanisms. J Biol Chem 2009, 284: 26695–26707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Atkinson W, Lockhart S, Whorwell PJ, Keevil B, Houghton LA . Altered 5-hydroxytryptamine signaling in patients with constipation- and diarrhea-predominant irritable bowel syndrome. Gastroenterology 2006; 130: 34–43.

    Article  CAS  PubMed  Google Scholar 

  25. Frolova EG, Pluskota E, Krukovets I, Burke T, Drumm C, Smith JD et al. Thrombospondin-4 regulates vascular inflammation and atherogenesis. Circ Res 2010; 107: 1313–1325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vogel CF, Garcia J, Wu D, Mitchell DC, Zhang Y, Kado NY et al. Activation of inflammatory responses in human U937 macrophages by particulate matter collected from dairy farms: an in vitro expression analysis of pro-inflammatory markers. Environ Health 2012; 11: 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Febbraio M, Hajjar DP, Silverstein RL . CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 2001; 108: 785–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 2010; 11: 155–161.

    Article  CAS  PubMed  Google Scholar 

  29. Leung LL, Li WX, McGregor JL, Albrecht G, Howard RJ . CD36 peptides enhance or inhibit CD36-thrombospondin binding. A two-step process of ligand-receptor interaction. J Biol Chem 1992, 267: 18244–18250.

    CAS  PubMed  Google Scholar 

  30. Frieda S, Pearce A, Wu J, Silverstein RL . Recombinant GST/CD36 fusion proteins define a thrombospondin binding domain. Evidence for a single calcium-dependent binding site on CD36. J Biol Chem 1995; 270: 2981–2986.

    Article  CAS  PubMed  Google Scholar 

  31. Bauer EM, Qin Y, Miller TW, Bandle RW, Csanyi G, Pagano PJ et al. Thrombospondin-1 supports blood pressure by limiting eNOS activation and endothelial-dependent vasorelaxation. Cardiovasc Res 2010; 88: 471–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Choi KY, Kim DB, Kim MJ, Kwon BJ, Chang SY, Jang SW et al. Higher plasma thrombospondin-1 levels in patients with coronary artery disease and diabetes mellitus. Korean Circ J 2012; 42: 100–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rallabhandi P, Bell J, Boukhvalova MS, Medvedev A, Lorenz E, Arditi M et al. Analysis of TLR4 polymorphic variants: new insights into TLR4/MD-2/CD14 stoichiometry, structure, and signaling. J Immunol 2006; 177: 322–332.

    Article  CAS  PubMed  Google Scholar 

  34. Salajegheh M, Raju R, Schmidt J, Dalakas MC . Upregulation of thrombospondin-1 (TSP-1) and its binding partners, CD36 and CD47, in sporadic inclusion body myositis. J Neuroimmunol 2007; 187: 166–174.

    Article  CAS  PubMed  Google Scholar 

  35. Lawler J, Sunday M, Thibert V, Duquette M, George EL, Rayburn H et al. Thrombospondin-1 is required for normal murine pulmonary homeostasis and its absence causes pneumonia. J Clin Invest 1998; 101: 982–992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schultz-Cherry S, Murphy-Ullrich JE . Thrombospondin causes activation of latent transforming growth factor-beta secreted by endothelial cells by a novel mechanism. J Cell Biol 1993; 122: 923–932.

    Article  CAS  PubMed  Google Scholar 

  37. Young GD, Murphy-Ullrich JE . Molecular interactions that confer latency to transforming growth factor-beta. J Biol Chem 2004; 279: 38032–38039.

    Article  CAS  PubMed  Google Scholar 

  38. Crawford SE, Stellmach V, Murphy-Ullrich JE, Ribeiro SM, Lawler J, Hynes RO et al. Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell 1998; 93: 1159–1170.

    Article  CAS  PubMed  Google Scholar 

  39. Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC et al. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 1993; 90: 770–774.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institute of Diabetes and Digestive and Kidney Diseases (DK 081555 to SW), a Veterans Affairs merit award (BX 001204 to SW) and the National Institutes of Health (P20RR021954).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuxia Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Qi, X., Tong, X. et al. Thrombospondin 1 activates the macrophage Toll-like receptor 4 pathway. Cell Mol Immunol 10, 506–512 (2013). https://doi.org/10.1038/cmi.2013.32

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2013.32

Keywords

This article is cited by

Search

Quick links