Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Monte Carlo study of B-cell receptor clustering mediated by antigen crosslinking and directed transport

Abstract

It is known from experiments that in the presence of soluble antigen, B-cell receptors (BCRs) assemble into microclusters and then collect into a macrocluster known as a ‘cap’. However, the mechanisms of BCR cluster formation during recognition of soluble antigens remain unclear. In previous work, we demonstrated that effective intrinsic attractions among BCRs can lead to the formation of small microclusters of BCR molecules. The effective intrinsic attractions could be caused by multivalent antigen binding, association with lipid rafts, or other biochemical factors. In the present study, we have developed and studied a Monte Carlo model of BCR clustering mediated by explicit binding and crosslinking of soluble bivalent antigens. Antigen crosslinking is shown to microcluster BCRs in an affinity-dependent manner and also in a biologically relevant timescale; however, antigen crosslinking alone does not appear to be sufficient for the formation of a single macrocluster of receptor molecules. We show that directed transport of BCRs is needed to drive the formation of large macroclusters. We constructed a simple model of directed transport, where BCR molecules diffuse towards the largest cluster or towards a random BCR microcluster, which results in a single macrocluster of receptor molecules. The mechanisms for both types of directed transport are compared using network-based metrics. We also develop and use appropriate network measures to analyze the effect of BCR and antigen concentration on BCR clustering, the stability of the formed clusters over time and the size of BCR–antigen crosslinked chains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Sohn HW, Tolar P, Jin T, Pierce SK . Fluorescence resonance energy transfer in living cells reveals dynamic membrane changes in the initiation of B cell signaling. Proc Natl Acad Sci USA 2006; 103: 8143–8148.

    Article  CAS  PubMed  Google Scholar 

  2. Tolar P, Sohn HW, Pierce SK . Viewing the antigen-induced initiation of B-cell activation in living cells. Immunol Rev 2008; 221: 64–76.

    Article  CAS  PubMed  Google Scholar 

  3. Unanue ER, Karnovsky MJ . Ligand-induced movement of lymphocyte membrane macromolecules: V. capping, cell movement, and microtubular function in normal and lectin-treated lymphocytes. J Exp Med 1974; 140: 1207–1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim YM, Pan JY, Korbel GA, Peperzak V, Boes M, Ploegh HL . Monovalent ligation of the B cell receptor induces receptor activation but fails to promote antigen presentation. Proc Natl Acad Sci USA 2006; 103: 3327–32.

    Article  CAS  PubMed  Google Scholar 

  5. Schreiner GF, Fujiwara K, Pollard TD, Unanue ER . Redistribution of myosin accompanying capping of surface Ig. J Exp Med 1977; 145: 1393–1398.

    Article  CAS  PubMed  Google Scholar 

  6. Pulendran B, Kannourakis G, Nouri S, Smith KG, Nossal GJ . Soluble antigen can cause enhanced apoptosis of germinal-centre B cells. Nature 1995; 375: 331–334.

    Article  CAS  Google Scholar 

  7. Minguet S, Dopfer EP, Schamel WW . Low-valency, but not monovalent, antigens trigger the B-cell antigen receptor (BCR). Int Immunol 2010; 22: 205–212.

    Article  CAS  PubMed  Google Scholar 

  8. Sauerborn M, Brinks V, Jiskoot W, Schellekens H . Immunological mechanism underlying the immune response to recombinant human protein therapeutics. Trends Pharmacol Sci 2010; 31: 53–59.

    Article  CAS  PubMed  Google Scholar 

  9. Nossal GJV, Karvelas M, Pulendran B . Soluble antigen profoundly reduces memory B-cell numbers even when given after challenge immunization. Proc Natl Acad Sci USA 1993; 90: 3088–3092.

    Article  CAS  PubMed  Google Scholar 

  10. Graziadei L, Riabowol K, Bar-Sagi D . Co-capping of ras proteins with surface immunoglobulins in B lymphocytes. Nature 1990; 347: 396–400.

    Article  CAS  PubMed  Google Scholar 

  11. LePage JF . A Computational model of cross-linking surface immunoglobin receptors on the surface of a B-lymphocyte cell, US Naval Academy Trident Scholar Project Report 158, 1989.

  12. Reddy AS, Chilukuri S, Raychaudhuri S . The network of receptors characterize B cell receptor micro- and macroclustering in a Monte Carlo model. J Phys Chem B 2010; 114: 487–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Le Doussal JM, Gautherot E, Martin M, Barbet J, Delaage M . Enhanced in vivo targeting of an asymmetric bivalent hapten to double-antigen-positive mouse B cells with monoclonal antibody conjugate cocktails. J Immunol 1991; 146: 169–175.

    CAS  PubMed  Google Scholar 

  14. Dembo M, Goldstein B . Theory of equilibrium binding of symmetric bivalent haptens to cell surface antibody: application to histamine release from basophils. J Immunol 1978; 121: 345–353.

    CAS  PubMed  Google Scholar 

  15. Shchelkunov SN, Salyaev RK, Pozdnyakov SG, Rekoslavskaya NI, Nesterov AE, Ryzhova TS et al. Immunogenicity of a novel, bivalent, plant-based oral vaccine against hepatitis B and human immunodeficiency viruses. Biotechnol Lett 2006; 28: 959–967.

    Article  CAS  PubMed  Google Scholar 

  16. Kane PM, Holowka D, Baird B Cross-linking of IgE-receptor complexes by rigid bivalent antigens greater than 200 A in length triggers cellular degranulation. J Cell Biol 1988; 107: 969–980.

    Article  CAS  PubMed  Google Scholar 

  17. Lin S, Lee AS, Lin CC, Lee CK . Determination of binding constant and stoichiometry for antibody-antigen interaction with surface plasmon resonance Current Proteomics 2006; 3: 271–282.

    Article  CAS  Google Scholar 

  18. Tolar P, Sohn HW, Pierce SK . Viewing the antigen-induced initiation of B-cell activation in living cells. Immunol Rev 2008; 221: 64–76.

    Article  CAS  PubMed  Google Scholar 

  19. Tsourkas PK, Raychaudhuri S . Modeling of B cell synapse formation by Monte Carlo simulation shows that directed transport of receptor molecules is a potential formation mechanism. Cellular Mol Bioeng 2010; 3: 256–268.

    Article  CAS  Google Scholar 

  20. Tsourkas PK, Longo ML, Raychaudhuri S . Monte Carlo study of single molecule diffusion can elucidate the mechanism of B cell synapse formation. Biophys J 2008; 95: 1118–1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tsourkas PK, Baumgarth N, Simon SI, Raychaudhuri S . Mechanisms of B-cell synapse formation predicted by Monte Carlo simulation. Biophysical J 2007; 92: 4196–4208.

    Article  CAS  Google Scholar 

  22. Dykstra M, Cherukuri A, Sohn HW, Tzeng SJ, Pierce SK . Location is everything: lipid rafts and immune cell signaling. Annu Rev Immunol 2003; 21: 457–481.

    Article  CAS  PubMed  Google Scholar 

  23. Schmidt C, Kim D, Ippolito GC, Naqvi HR, Probst L, Mathur S et al. Signalling of the BCR is regulated by a lipid rafts-localised transcription factor, Bright. EMBO J 2009; 28: 711–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goldstein B, Faeder JR, Hlavacek WS . Mathematical and computational models of immune-receptor signalling. Nat Rev Immunol 2004; 4: 445–456.

    Article  CAS  PubMed  Google Scholar 

  25. Rabellino E, Colon S, Grey HM, Unanue ER . Immunoglobulins on the surface of lymphocytes: I. Distribution and quantitation. J Exp Med 1971; 133: 156–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Favier B, Burroughs NJ, Wedderburn L, Valitutti S . TCR dynamics on the surface of living T cells. Int Immunol 2001; 13: 1525–1532.

    Article  CAS  PubMed  Google Scholar 

  27. Alarcon T, Page KM . Stochastic models of receptor oligomerization by bivalent ligand. J R Soc Interface 2006; 3: 545–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Beltman JB, Henrickson SE, von Andrian UH, de Boer RJ, Marée AF . Towards estimating the true duration of dendritic cell interactions with T cells. J Immunol Methods 2009; 347: 54–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nudelman G, Weigert M, Louzoun Y . In-silico cell surface modeling reveals mechanism for initial steps of B-cell receptor signal transduction. Mol Immunol 2009; 46: 3141–3150.

    Article  CAS  PubMed  Google Scholar 

  30. Raychaudhuri S, Tsourkas P, Willgohs E . Computational modeling of receptor–ligand binding and cellular signaling processes. In: Jue T (ed.) Handbook of Modern Biophysics, Volume I: Fundamentals. New York: Humana Press, Springer, 2009.

    Google Scholar 

  31. Splinter ThA, Collard JG, de Wildt A, Temmink JH, Decary F . Capping of surface immunoglobulin on ‘hairy cells’ is independent of energy production. J Cell Sci 1979; 36: 45–59.

    CAS  PubMed  Google Scholar 

  32. Liu W, Meckel T, Tolar P, Sohn HW, Pierce SK . Antigen affinity discrimination is an intrinsic function of the B cell receptor. J Exp Med 2010; 207: 1095–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Batista FD, Iber D, Neuberger MS . B cells acquire antigen from target cells after synapse formation. Nature 2001; 411: 489–494.

    Article  CAS  Google Scholar 

  34. Batista FD, Harwood NE . The who, how and where of antigen presentation to B cells. Nat Rev Immunol 2009; 9: 15–27.

    Article  CAS  PubMed  Google Scholar 

  35. Fleire SJ, Goldman JP, Carrasco YR, Weber M, Bray D, Batista FD . B cell ligand discrimination through a spreading and contraction response. Science 2006; 312: 738–741.

    Article  CAS  Google Scholar 

  36. Carrasco YR, Fleire SJ, Cameron T, Dustin ML, Batista FD . LFA-1/ICAM-1 interaction lowers the threshold of B cell activation by facilitating B cell adhesion and synapse formation. Immunity 2004; 20: 589–599.

    Article  CAS  Google Scholar 

  37. Carrasco YR, Batista FD . B-cell activation by membrane-bound antigens is facilitated by the interaction of VLA-4 with VCAM-1. EMBO J 2006; 25: 889–899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM et al. The immunological synapse: a molecular machine controlling T cell activation. Science 1999; 285: 221–227.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

ASR, PKT and SR are supported from National Institutes of Health grant AI074022. The results obtained with different binding strength values (K), and considering the eight neighboring nodes are reported in supporting information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhadip Raychaudhuri.

Additional information

Note: Supplementary information is available on the Cellular & Molecular Immunology website.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivas Reddy, A., Tsourkas, P. & Raychaudhuri, S. Monte Carlo study of B-cell receptor clustering mediated by antigen crosslinking and directed transport. Cell Mol Immunol 8, 255–264 (2011). https://doi.org/10.1038/cmi.2011.3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2011.3

Keywords

Search

Quick links