Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Life after transplant: are we becoming high maintenance in AML?

Abstract

Allogeneic hematopoietic cell transplantation (allo-HCT) for patients with AML is increasingly able to impact the historically poor outcomes in this disease. Nonetheless, even with transplant, the rates of post-HCT relapse are unacceptably high, and remain a great challenge in the treatment of patients with AML. Maintenance therapies after allo-HCT, given to patients at high risk of relapse or with evidence of minimal residual disease (MRD), may provide a way to reduce relapse rates and improve survival. New therapies may offer acceptable toxicity profiles in the post-HCT setting, and investigations are ongoing using hypomethylating agents, histone deacetylase inhibitors, immunomodulatory drugs, targeted tyrosine kinase inhibitors, drug–antibody conjugates and cellular therapies. Future directions in the field of post-HCT therapies may include better risk stratification with MRD, as well as the exploitation of novel mechanisms such as immune checkpoint inhibition and modified chimeric antigen receptor (CAR) T cells. In this mini review, we discuss the current landscape of clinical research in post-HCT maintenance therapies, as well as future therapeutic strategies of interest. Although there is great potential for post-HCT agents to improve AML outcomes, these will need to be evaluated prospectively through well-designed randomized clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Koreth J, Schlenk R, Kopecky KJ, Honda S, Sierra J, Djulbegovic BJ et al. Allogeneic stem cell transplantation for acute myeloid leukemia in first complete remission: a systematic review and meta-analysis of prospective clinical trials. JAMA J Am Med Assoc 2009; 301: 2349–2361.

    Article  CAS  Google Scholar 

  2. Stone RM . Acute myeloid leukemia in first remission: to choose transplantation or not? J Clin Oncol 2013; 31: 1262–1266.

    Article  PubMed  Google Scholar 

  3. Burnett AK, Goldstone A, Hills RK, Milligan D, Prentice A, Yin J et al. Curability of patients with acute myeloid leukemia who did not undergo transplantation in first remission. J Clin Oncol 2013; 31: 1293–1301.

    Article  PubMed  Google Scholar 

  4. Gragert L, Eapen M, Williams E, Freeman J, Spellman S, Baitty R et al. HLA match likelihoods for hematopoietic stem-cell grafts in the US registry. N Engl J Med 2014; 371: 339–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ciurea SO, Zhang M-J, Bacigalupo AA, Bashey A, Appelbaum FR, Aljitawi OS et al. Haploidentical transplant with posttransplant cyclophosphamide vs matched unrelated donor transplant for acute myeloid leukemia. Blood 2015; 126: 1033–1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cornelissen JJ, Blaise D . Hematopoietic stem cell transplantation for patients with AML in first complete remission. Blood 2016; 127: 62–70.

    Article  CAS  PubMed  Google Scholar 

  7. Sorror ML, Sandmaier BM, Storer BE, Franke GN, Laport GG, Chauncey TR et al. Long-term outcomes among older patients following nonmyeloablative conditioning and allogeneic hematopoietic cell transplantation for advanced hematologic malignancies. JAMA J Am Med Assoc 2011; 306: 1874–1883.

    Article  CAS  Google Scholar 

  8. Brunner A, Sadrzadeh H, Werner L, Ballen KK, Chen Y-BA, Amrein PC et al. A comparative retrospective survey of reinduction chemotherapy regimens for acute myeloid leukemia (AML) in first relapse: a single-institution experience. ASH Annu Meet Abstr 2011; 118: 4273.

    Google Scholar 

  9. Bejanyan N, Weisdorf DJ, Logan BR, Wang H-L, Devine SM, de Lima M et al. Survival of patients with acute myeloid leukemia relapsing after allogeneic hematopoietic cell transplantation: a center for International Blood and Marrow Transplant Research Study. Biol Blood Marrow Transplant 2015; 21: 454–459.

    Article  PubMed  Google Scholar 

  10. Wingard JR, Majhail NS, Brazauskas R, Wang Z, Sobocinski KA, Jacobsohn D et al. Long-term survival and late deaths after allogeneic hematopoietic cell transplantation. J Clin Oncol 2011; 29: 2230–2239.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shafer D, Grant S . Update on rational targeted therapy in AML. Blood Rev, (e-pub ahead of print 22 February 2016; doi:10.1016/j.blre.2016.02.001).

  12. Estey E, Levine RL, Löwenberg B . Current challenges in clinical development of ‘targeted therapies’: the case of acute myeloid leukemia. Blood 2015; 125: 2461–2466.

    Article  CAS  PubMed  Google Scholar 

  13. Fathi AT, Abdel-Wahab O . Mutations in epigenetic modifiers in myeloid malignancies and the prospect of novel epigenetic-targeted therapy. Adv Hematol 2011; 2012: 469592.

    PubMed  PubMed Central  Google Scholar 

  14. Barrett AJ, Battiwalla M . Relapse after allogeneic stem cell transplantation. Expert Rev Hematol 2010; 3: 429–441.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schroeder T, Czibere A, Platzbecker U, Bug G, Uharek L, Luft T et al. Azacitidine and donor lymphocyte infusions as first salvage therapy for relapse of AML or MDS after allogeneic stem cell transplantation. Leukemia 2013; 27: 1229–1235.

    Article  CAS  PubMed  Google Scholar 

  16. Schmid C, Labopin M, Nagler A, Niederwieser D, Castagna L, Tabrizi R et al. Treatment, risk factors, and outcome of adults with relapsed AML after reduced intensity conditioning for allogeneic stem cell transplantation. Blood 2012; 119: 1599–1606.

    Article  CAS  PubMed  Google Scholar 

  17. de Lima M, Giralt S, Thall PF, de Padua Silva L, Jones RB, Komanduri K et al. Maintenance therapy with low-dose azacitidine after allogeneic hematopoietic stem cell transplantation for recurrent acute myelogenous leukemia or myelodysplastic syndrome. Cancer 2010; 116: 5420–5431.

    Article  CAS  PubMed  Google Scholar 

  18. Antar A, Kharfan-Dabaja MA, Ghaddara HA, Mahfouz R, Bazarbachi A . Azacitidine maintenance after allogeneic stem cell transplantation is feasible in patients with acute myeloid leukemia and myelodysplasia. Blood 2014; 124: 5884–5884.

    Google Scholar 

  19. Vij R, Hars V, Blum W, Shore TB, Rapoport AP, Shea TC et al. CALGB 100801 (Alliance): a Phase II multi-center nci cooperative group study of the addition of azacitidine (AZA) to reduced-intensity conditioning (RIC) allogeneic transplantation for high risk myelodysplasia (MDS) and older patients with acute myeloid leukemia (AML): results of a ‘test dose’ strategy to target busulfan exposure. Blood 2014; 124: 543–543.

    Google Scholar 

  20. Craddock C, Jilani N, Siddique S, Yap C, Khan J, Nagra S et al. Tolerability and clinical activity of post-transplantation azacitidine in patients allografted for acute myeloid leukemia treated on the RICAZA trial. Biol Blood Marrow Transplant 2016; 22: 385–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schroeder MA, Choi J, Cooper ML, Schwab D, Willey S, Liu J (Esther) et al. A phase I/II trial of intravenous azacitidine for acute gvhd prophylaxis in patients undergoing matched unrelated stem cell transplantation: phase I results. Blood 2015; 126: 1935–1935.

    Google Scholar 

  22. Goodyear OC, Dennis M, Jilani NY, Loke J, Siddique S, Ryan G et al. Azacitidine augments expansion of regulatory T cells after allogeneic stem cell transplantation in patients with acute myeloid leukemia (AML). Blood 2012; 119: 3361–3369.

    Article  CAS  PubMed  Google Scholar 

  23. Pusic I, Choi J, Fiala MA, Gao F, Holt M, Cashen AF et al. Maintenance therapy with decitabine after allogeneic stem cell transplantation for acute myelogenous leukemia and myelodysplastic syndrome. Biol Blood Marrow Transplant 2015; 21: 1761–1769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Platzbecker U, Wermke M, Radke J, Oelschlaegel U, Seltmann F, Kiani A et al. Azacitidine for treatment of imminent relapse in MDS or AML patients after allogeneic HSCT: results of the RELAZA trial. Leukemia 2012; 26: 381–389.

    Article  CAS  PubMed  Google Scholar 

  25. Bug G, Burchert A, Wagner E-M, Kroeger N, Jedlickova Z, Gueller S et al. Phase I/II study of the deacetylase inhibitor panobinostat as maintenance therapy after an allogeneic stem cell transplantation in patients with high-risk MDS or AML: The Panobest-Trial. Blood 2015; 126: 4344–4344.

    Google Scholar 

  26. Bar M, Radich J . Maintenance therapy with tyrosine kinase inhibitors after transplant in patients with chronic myeloid leukemia. J Natl Compr Canc Netw 2013; 11: 308–315.

    Article  CAS  PubMed  Google Scholar 

  27. Olavarria E, Siddique S, Griffiths MJ, Avery S, Byrne JL, Piper KP et al. Posttransplantation imatinib as a strategy to postpone the requirement for immunotherapy in patients undergoing reduced-intensity allografts for chronic myeloid leukemia. Blood 2007; 110: 4614–4617.

    Article  CAS  PubMed  Google Scholar 

  28. Caocci G, Vacca A, Ledda A, Murgia F, Piras E, Greco M et al. Prophylactic and preemptive therapy with dasatinib after hematopoietic stem cell transplantation for philadelphia chromosome-positive acute lymphoblastic leukemia. Biol Blood Marrow Transpl 2012; 18: 652–654.

    Article  Google Scholar 

  29. Brissot E, Labopin M, Beckers MM, Socie G, Rambaldi A, Volin L et al. Tyrosine kinase inhibitors improve long-term outcome of allogeneic hematopoietic stem cell transplantation for adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia. Haematologica 2015; 100: 392–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wander SA, Levis MJ, Fathi AT . The evolving role of FLT3 inhibitors in acute myeloid leukemia: quizartinib and beyond. Ther Adv Hematol 2014; 5: 65–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen Y-B, Li S, Lane AA, Connolly C, Del Rio C, Valles B et al. Phase I trial of maintenance sorafenib after allogeneic hematopoietic stem cell transplantation for fms-like tyrosine kinase 3 internal tandem duplication acute myeloid leukemia. Biol Blood Marrow Transpl 2014; 20: 2042–2048.

    Article  CAS  Google Scholar 

  32. Brunner AM, Li S, Fathi AT, Ho VT, Stone RM, Soiffer RJ et al. Hematopoietic cell transplantation with or without sorafenib maintenance for patients with FLT3-ITD acute myeloid leukemia in CR1. Blood 2015; 126: 864–864.

    Google Scholar 

  33. Sammons SL, Pratz KW, Smith BD, Karp JE, Emadi A . Sorafenib is tolerable and improves clinical outcomes in patients with FLT3-ITD acute myeloid leukemia prior to stem cell transplant and after relapse post-transplant. Am J Hematol 2014; 89: 936–938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Antar A, Kharfan-Dabaja MA, Mahfouz R, Bazarbachi A . Sorafenib maintenance appears safe and improves clinical outcomes in FLT3-ITD acute myeloid leukemia after allogeneic hematopoietic cell transplantation. Clin Lymphoma Myeloma Leuk 2015; 15: 298–302.

    Article  PubMed  Google Scholar 

  35. Pratz KW, Gojo I, Karp JE, Luznik L, Smith BD, Jones RJ et al. Prospective study of peri-transplant use of sorafenib as remission maintenance for FLT3-ITD patients undergoing allogeneic transplantation. Blood 2015; 126: 3164–3164.

    Google Scholar 

  36. Tarlock K, Chang B, Cooper T, Gross T, Gupta S, Neudorf S et al. Sorafenib treatment following hematopoietic stem cell transplant in pediatric FLT3/ITD acute myeloid leukemia. Pediatr Blood Cancer 2015; 62: 1048–1054.

    Article  CAS  PubMed  Google Scholar 

  37. Liu Q, Xuan L, Fan Z, Jiang Q, Dai M, Shi P et al. Prophylactic use of sorafenib in patients with flt3-itd-positive acute myeloid leukemia undergoing allogeneic hematopoietic stem cell transplantation. Blood 2014; 124: 3943–3943.

    Google Scholar 

  38. Sandmaier BM, Khaled SK, Oran B, Gammon G, Trone D, Frankfurt O . Results of a phase 1 study of quizartinib (AC220) as maintenance therapy in subjects with acute myeloid leukemia in remission following allogeneic hematopoietic cell transplantation. Blood 2014; 124: 428–428.

    Google Scholar 

  39. Schlenk R, Döhner K, Salih H, Kündgen A, Fiedler W, Salwender H-J et al. Midostaurin in combination with intensive induction and as single agent maintenance therapy after consolidation therapy with allogeneic hematopoietic stem cell transplantation or high-dose cytarabine (NCT01477606). Blood 2015; 126: 322–322.

    Google Scholar 

  40. Oshikawa G, Kakihana K, Saito M, Aoki J, Najima Y, Kobayashi T et al. Post-transplant maintenance therapy with azacitidine and gemtuzumab ozogamicin for high-risk acute myeloid leukaemia. Br J Haematol 2015; 169: 756–759.

    Article  CAS  PubMed  Google Scholar 

  41. Blum W, Klisovic RB, Becker H, Yang X, Rozewski DM, Phelps MA et al. Dose Escalation of Lenalidomide in Relapsed or Refractory Acute Leukemias. J Clin Oncol 2010; 28: 4919–4925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sockel K, Bornhaeuser M, Mischak-Weissinger E, Trenschel R, Wermke M, Unzicker C et al. Lenalidomide maintenance after allogeneic HSCT seems to trigger acute graft-versus-host disease in patients with high-risk myelodysplastic syndromes or acute myeloid leukemia and del(5q): results of the LENAMAINT trial. Haematologica 2012; 97: e34–e35.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kneppers E, Holt B, van der, Kersten M-J, Zweegman S, Meijer E, Huls G et al. Lenalidomide maintenance after nonmyeloablative allogeneic stem cell transplantation in multiple myeloma is not feasible: results of the HOVON 76 Trial. Blood 2011; 118: 2413–2419.

    Article  CAS  PubMed  Google Scholar 

  44. Alsina M, Becker PS, Zhong X, Adams A, Hari P, Rowley S et al. Lenalidomide maintenance for high-risk multiple myeloma after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transpl 2014; 20: 1183–1189.

    Article  CAS  Google Scholar 

  45. Massenkeil G, Nagy M, Lawang M, Rosen O, Genvresse I, Geserick G et al. Reduced intensity conditioning and prophylactic DLI can cure patients with high-risk acute leukaemias if complete donor chimerism can be achieved. Bone Marrow Transplant 2003; 31: 339–345.

    Article  CAS  PubMed  Google Scholar 

  46. Dey BR, McAfee S, Colby C, Sackstein R, Saidman S, Tarbell N et al. Impact of prophylactic donor leukocyte infusions on mixed chimerism, graft-versus-host disease, and antitumor response in patients with advanced hematologic malignancies treated with nonmyeloablative conditioning and allogeneic bone marrow transplantation. Biol Blood Marrow Transplant 2003; 9: 320–329.

    Article  PubMed  Google Scholar 

  47. Wang Y, Liu D-H, Fan Z-P, Sun J, Wu X-J, Ma X et al. Prevention of relapse using DLI can increase survival following HLA-identical transplantation in patients with advanced-stage acute leukemia: a multi-center study. Clin Transplant 2012; 26: 635–643.

    Article  PubMed  Google Scholar 

  48. Huang X-J, Wang Y, Liu D-H, Xu L-P, Chen H, Chen Y-H et al. Modified donor lymphocyte infusion (DLI) for the prophylaxis of leukemia relapse after hematopoietic stem cell transplantation in patients with advanced leukemia—feasibility and safety study. J Clin Immunol 2008; 28: 390–397.

    Article  CAS  PubMed  Google Scholar 

  49. de Lima M, Bonamino M, Vasconcelos Z, Colares M, Diamond H, Zalcberg I et al. Prophylactic donor lymphocyte infusions after moderately ablative chemotherapy and stem cell transplantation for hematological malignancies: high remission rate among poor prognosis patients at the expense of graft-versus-host disease. Bone Marrow Transplant 2001; 27: 73–78.

    Article  CAS  PubMed  Google Scholar 

  50. Kobbe G, Fenk R, Neumann F, Bernhardt A, Steidl U, Kondakci M et al. Transplantation of allogeneic CD34+-selected cells followed by early T-cell add-backs: favorable results in acute and chronic myeloid leukemia. Cytotherapy 2004; 6: 533–542.

    Article  CAS  PubMed  Google Scholar 

  51. Soiffer RJ . Donor lymphocyte infusions for acute myeloid leukaemia. Best Pract Res Clin Haematol 2008; 21: 455–466.

    Article  CAS  PubMed  Google Scholar 

  52. Schmid C, Labopin M, Veelken H, Schaap NPM, Schleuning M, Stadler M et al. Efficacy, safety and long term results of prophylactic and preemptive donor lymphocyte infusion after allogeneic stem cell transplantation for acute leukemia: a registry-based evaluation on 343 patients by the acute leukemia working party of EBMT. Blood 2015; 126: 863–863.

    Article  CAS  Google Scholar 

  53. Maeda T, Hosen N, Fukushima K, Tsuboi A, Morimoto S, Matsui T et al. Maintenance of complete remission after allogeneic stem cell transplantation in leukemia patients treated with Wilms tumor 1 peptide vaccine. Blood Cancer J 2013; 3: e130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tsuboi A, Oka Y, Kyo T, Katayama Y, Elisseeva OA, Kawakami M et al. Long-term WT1 peptide vaccination for patients with acute myeloid leukemia with minimal residual disease. Leukemia 2012; 26: 1410–1413.

    Article  CAS  PubMed  Google Scholar 

  55. Rezvani K, Yong ASM, Mielke S, Jafarpour B, Savani BN, Le RQ et al. Repeated PR1 and WT1 peptide vaccination in Montanide-adjuvant fails to induce sustained high-avidity, epitope-specific CD8+ T cells in myeloid malignancies. Haematologica 2011; 96: 432–440.

    Article  CAS  PubMed  Google Scholar 

  56. Keilholz U, Letsch A, Busse A, Asemissen AM, Bauer S, Blau IW et al. A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood 2009; 113: 6541–6548.

    Article  CAS  PubMed  Google Scholar 

  57. Kuball J, de Boer K, Wagner E, Wattad M, Antunes E, Weeratna RD et al. Pitfalls of vaccinations with WT1-, Proteinase3- and MUC1-derived peptides in combination with MontanideISA51 and CpG7909. Cancer Immunol Immunother 2011; 60: 161–171.

    Article  CAS  PubMed  Google Scholar 

  58. Rezvani K, Price DA, Brenchley JM, Kilical Y, Gostick E, Sconocchia G et al. Transfer of PR1-specific T-cell clones from donor to recipient by stem cell transplantation and association with GvL activity. Cytotherapy 2007; 9: 245–251.

    Article  CAS  PubMed  Google Scholar 

  59. Yasukawa M, Fujiwara H, Ochi T, Suemori K, Narumi H, Azuma T et al. Clinical efficacy of WT1 peptide vaccination in patients with acute myelogenous leukemia and myelodysplastic syndrome. Am J Hematol 2009; 84: 314–315.

    Article  PubMed  Google Scholar 

  60. Di Stasi A, Jimenez AM, Minagawa K, Al-Obaidi M, Rezvani K . Review of the results of WT1 peptide vaccination strategies for myelodysplastic syndromes and acute myeloid leukemia from nine different studies. Front Immunol 2015; 6: 36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rezvani K, Yong ASM, Mielke S, Savani BN, Musse L, Superata J et al. Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood 2008; 111: 236–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brudno JN, Somerville RPT, Shi V, Rose JJ, Halverson DC, Fowler DH et al. Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of b-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J Clin Oncol 2016; 34: 1112–1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chapuis AG, Ragnarsson GB, Nguyen HN, Chaney CN, Pufnock JS, Schmitt TM et al. Transferred WT1-reactive CD8+ T cells can mediate antileukemic activity and persist in post-transplant patients. Sci Transl Med 2013; 5: 174ra27–174ra27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Grimwade D, Freeman SD . Defining minimal residual disease in acute myeloid leukemia: which platforms are ready for ‘prime time’? Blood 2014; 124: 3345–3355.

    Article  CAS  PubMed  Google Scholar 

  65. Schnittger S, Kern W, Tschulik C, Weiss T, Dicker F, Falini B et al. Minimal residual disease levels assessed by NPM1 mutation–specific RQ-PCR provide important prognostic information in AML. Blood 2009; 114: 2220–2231.

    Article  CAS  PubMed  Google Scholar 

  66. Krönke J, Schlenk RF, Jensen K-O, Tschürtz F, Corbacioglu A, Gaidzik VI et al. Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: a study from the german-austrian acute myeloid leukemia study group. J Clin Oncol 2011; 29: 2709–2716.

    Article  PubMed  Google Scholar 

  67. Ivey A, Hills RK, Simpson MA, Jovanovic JV, Gilkes A, Grech A et al. Assessment of minimal residual disease in standard-risk AML. N Engl J Med 2016; 374: 422–433.

    Article  CAS  PubMed  Google Scholar 

  68. Perea G, Lasa A, Aventín A, Domingo A, Villamor N, Paz Queipo de Llano M et al. Prognostic value of minimal residual disease (MRD) in acute myeloid leukemia (AML) with favorable cytogenetics [t(8;21) and inv(16)]. Leukemia 2005; 20: 87–94.

    Article  CAS  Google Scholar 

  69. Duployez N, Nibourel O, Marceau-Renaut A, Willekens C, Helevaut N, Caillault A et al. Minimal residual disease monitoring in t(8;21) acute myeloid leukemia based on RUNX1-RUNX1T1 fusion quantification on genomic DNA. Am J Hematol 2014; 89: 610–615.

    Article  CAS  PubMed  Google Scholar 

  70. Wang Y, Wu D-P, Liu Q-F, Qin Y-Z, Wang J-B, Xu L-P et al. In adults with t(8;21)AML, posttransplant RUNX1/RUNX1T1-based MRD monitoring, rather than c-KIT mutations, allows further risk stratification. Blood 2014; 124: 1880–1886.

    Article  CAS  PubMed  Google Scholar 

  71. Corbacioglu A, Scholl C, Schlenk RF, Eiwen K, Du J, Bullinger L et al. Prognostic Impact of minimal residual disease inCBFB-MYH11–positive acute myeloid leukemia. J Clin Oncol 2010; 28: 3724–3729.

    Article  CAS  PubMed  Google Scholar 

  72. Grimwade D, Jovanovic JV, Hills RK, Nugent EA, Patel Y, Flora R et al. Prospective minimal residual disease monitoring to predict relapse of acute promyelocytic leukemia and to direct pre-emptive arsenic trioxide therapy. J Clin Oncol 2009; 27: 3650–3658.

    Article  CAS  PubMed  Google Scholar 

  73. Kern W, Voskova D, Schoch C, Hiddemann W, Schnittger S, Haferlach T . Determination of relapse risk based on assessment of minimal residual disease during complete remission by multiparameter flow cytometry in unselected patients with acute myeloid leukemia. Blood 2004; 104: 3078–3085.

    Article  CAS  PubMed  Google Scholar 

  74. Terwijn M, Putten WLJ, van, Kelder A, Velden VHJ, van der, Brooimans RA, Pabst T et al. High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: data from the HOVON/SAKK AML 42A study. J Clin Oncol 2013; 31: 3889–3897.

    Article  PubMed  Google Scholar 

  75. Walter RB, Gooley TA, Wood BL, Milano F, Fang M, Sorror ML et al. Impact of pretransplantation minimal residual disease, as detected by multiparametric flow cytometry, on outcome of myeloablative hematopoietic cell transplantation for acute myeloid leukemia. J Clin Oncol 2011; 29: 1190–1197.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Walter RB, Buckley SA, Pagel JM, Wood BL, Storer BE, Sandmaier BM et al. Significance of minimal residual disease before myeloablative allogeneic hematopoietic cell transplantation for AML in first and second complete remission. Blood 2013; 122: 1813–1821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Anthias C, Dignan FL, Morilla R, Morilla A, Ethell ME, Potter MN et al. Pre-transplant MRD predicts outcome following reduced-intensity and myeloablative allogeneic hemopoietic SCT in AML. Bone Marrow Transplant 2014; 49: 679–683.

    Article  CAS  PubMed  Google Scholar 

  78. Araki D, Wood BL, Othus M, Radich JP, Halpern AB, Zhou Y et al. Allogeneic hematopoietic cell transplantation for acute myeloid leukemia: time to move toward a minimal residual disease–based definition of complete remission? J Clin Oncol 2015; 34: 329–336.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cloos J, Goemans BF, Hess CJ, van Oostveen JW, Waisfisz Q, Corthals S et al. Stability and prognostic influence of FLT3 mutations in paired initial and relapsed AML samples. Leukemia 2006; 20: 1217–1220.

    Article  CAS  PubMed  Google Scholar 

  80. Palmisano M, Grafone T, Ottaviani E, Testoni N, Baccarani M, Martinelli G . NPM1 mutations are more stable than FLT3 mutations during the course of disease in patients with acute myeloid leukemia. Haematologica 2007; 92: 1268–1269.

    Article  PubMed  Google Scholar 

  81. Kottaridis PD, Gale RE, Langabeer SE, Frew ME, Bowen DT, Linch DC . Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood 2002; 100: 2393–2398.

    Article  CAS  PubMed  Google Scholar 

  82. Armand P, Gibson CJ, Cutler C, Ho VT, Koreth J, Alyea EP et al. A disease risk index for patients undergoing allogeneic stem cell transplantation. Blood 2012; 120: 905–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Armand P, Kim HT, Logan BR, Wang Z, Alyea EP, Kalaycio ME et al. Validation and refinement of the Disease Risk Index for allogeneic stem cell transplantation. Blood 2014; 123: 3664–3671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Grunwald MR, Tseng L-H, Lin M-T, Pratz KW, Eshleman JR, Levis MJ et al. Improved FLT3/ITD PCR assay predicts outcome following allogeneic transplant for AML. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant 2014; 20: 1989–1995.

    Article  CAS  Google Scholar 

  85. Levis M . Targeting IDH: the next big thing in AML. Blood 2013; 122: 2770–2771.

    Article  CAS  PubMed  Google Scholar 

  86. DiNardo C, de Botton S, Pollyea DA, Stein EM, Fathi AT, Roboz GJ et al. Molecular profiling and relationship with clinical response in patients with IDH1 mutation-positive hematologic malignancies receiving AG-120, a first-in-class potent inhibitor of mutant IDH1, in addition to data from the completed dose escalation portion of the phase 1 study. Blood 2015; 126: 1306–1306.

    Article  CAS  Google Scholar 

  87. Stein EM, DiNardo C, Altman JK, Collins R, DeAngelo DJ, Kantarjian HM et al. Safety and efficacy of AG-221, a potent inhibitor of mutant IDH2 that promotes differentiation of myeloid cells in patients with advanced hematologic malignancies: results of a phase 1/2 trial. Blood 2015; 126: 323–323.

    Google Scholar 

Download references

Acknowledgements

AMB is supported in part by National Institutes of Health (NIH) grant T32 CA 71345-18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y B Chen.

Ethics declarations

Competing interests

ATF has participated on advisory boards for Agios and Merck and received funding for clinical research from Celgene and Takeda. YBC has received consulting fees from Bayer, Seattle Genetics and Takeda, and funding for clinical research from Celgene, Novartis, Takeda, Bayer and Seattle Genetics. AMB declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunner, A., Fathi, A. & Chen, Y. Life after transplant: are we becoming high maintenance in AML?. Bone Marrow Transplant 51, 1423–1430 (2016). https://doi.org/10.1038/bmt.2016.160

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2016.160

This article is cited by

Search

Quick links