Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Graft Manipulation

Negative selection by apoptosis enriches progenitors in naïve and expanded human umbilical cord blood grafts

Abstract

The influence of TNF-α and Fas-ligand (FasL) on viability and function was evaluated in fresh- and expanded-umbilical cord blood (UCB) cells. CD34+ progenitors and T cells display outstanding survival, whereas ~30% and >50% B lymphocytes and myeloid cells undergo spontaneous apoptosis within 24 and 48 h, respectively. Although the impact of exposure to toxic doses of FasL and TNF-α was undetectable in measurements of apoptosis; removal of dead cells after 2 days of incubation with the ligands revealed a twofold increase in frequency of colony-forming cells (CFU). The sensitivity of progenitors to apoptosis was also unaffected by Fas cross-linking following TNF-induced upregulation of the receptor, increasing CFU frequency without impairing SCID repopulating cell (SRC) activity. Most significant enrichment in CD34+ progenitors and corresponding increase in CFU frequency were observed when FasL was applied during the final week of ex vivo expansion under the influence of nicotinamide, without impairing SRC activity. These data emphasize differential sensitivities of UCB progenitors and lineage-positive cells to apoptotic signaling mediated by the Fas and TNF receptors, which might be useful in improving the efficiency of ex vivo expansion and improving UCB cell engraftment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Fernández MN, Millán I, Gluckman E . Cord-blood transplants. New Engl J Med 1999; 340: 1287–1288.

    Article  Google Scholar 

  2. Rosler ES, Brandt JE, Chute J, Hoffman R . An in vivo competitive repopulation assay for various sources of human hematopoietic stem cells. Blood 2000; 96: 3414–3421.

    CAS  PubMed  Google Scholar 

  3. Tanavde VM, Malehorn MT, Lumkul R, Gao Z, Wingard J, Garrett ES et al. Human stem-progenitor cells from neonatal cord blood have greater hematopoietic expansion capacity than those from mobilized adult blood. Exp Hematol 2002; 30: 816–823.

    Article  CAS  Google Scholar 

  4. Frassoni F, Podesta M, Maccario R, Giorgiani G, Rossi G, Zecca M et al. Cord blood transplantation provides better reconstitution of hematopoietic reservoir compared with bone marrow transplantation. Blood 2003; 102: 1138–1141.

    Article  CAS  Google Scholar 

  5. Rocha V, Labopin M, Sanz G, Arcese W, Schwerdtfeger R, Bosi A et al. Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. New Engl J Med 2004; 351: 2276–2285.

    Article  CAS  Google Scholar 

  6. Lekakis L, Giralt S, Couriel D, Shpall EJ, Hosing C, Khouri IF et al. Phase II study of unrelated cord blood transplantation for adults with high-risk hematologic malignancies. Bone Marrow Transplant 2006; 38: 421–426.

    Article  CAS  Google Scholar 

  7. Tse W, Laughlin M . Cord blood transplantation in adult patients. Cytotherapy 2005; 7: 228–242.

    Article  CAS  Google Scholar 

  8. Schoemans H, Theunissen K, Maertens J, Boogaerts M, Verfaillie C, Wagner J . Adult umbilical cord blood transplantation: a comprehensive review. Bone Marrow Transplant 2006; 38: 83–93.

    Article  CAS  Google Scholar 

  9. Brown JA, Boussiotis VA . Umbilical cord blood transplantation: basic biology and clinical challenges to immune reconstitution. Clin Immunol 2008; 127: 286–297.

    Article  CAS  Google Scholar 

  10. Rocha V, Broxmeyer H . New approaches for improving engraftment after Cord Blood Transplantation. Biol Blood Marrow Transplant 2010; 16 (Suppl 1): S126–S132.

    Article  Google Scholar 

  11. Barker JN, Weisdorf DJ, DeFor TE, Barker JN, Weisdorf DJ, DeFor TE et al. Transplantation of 2 partially HLA-matched umbilical cord blood units to enhance engraftment in adults with hematologic malignancy. Blood 2005; 105: 1343–1347.

    Article  CAS  Google Scholar 

  12. Brunstein CG, Barker JN, Weisdorf DJ, Defor TE, McKenna D, Chong SY et al. Intra-BM injection to enhance engraftment after myeloablative umbilical cord blood transplantation with two partially HLA-matched units. Bone Marrow Transplant 2009; 43: 935–940.

    Article  CAS  Google Scholar 

  13. Peled T, Landau E, Mandel J, Glukhman E, Goudsmid NR, Nagler A et al. Linear polyamine copper chelator tetraethylenepentamine augments long-term ex vivo expansion of cord blood-derived CD34+ cells and increases their engraftment potential in NOD/SCID mice. Exp Hematol 2004; 32: 547–555.

    Article  CAS  Google Scholar 

  14. Araki H, Mahmud N, Milhem M, Nunez R, Xu M, Beam CA et al. Expansion of human umbilical cord blood SCID-repopulating cells using chromatin-modifying agents. Exp Hematol 2006; 34: 140–149.

    Article  CAS  Google Scholar 

  15. de Lima M, McMannis J, Gee A, Komanduri K, Couriel D, Andersson BS et al. Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial. Bone Marrow Transplant 2008; 41: 771–778.

    Article  CAS  Google Scholar 

  16. Rocha V, Wagner JE Jr, Sobocinski KA, Klein JP, Zhang MJ, Horowitz MM et al. Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. New Engl J Med 2000; 342: 1846–1854.

    Article  CAS  Google Scholar 

  17. Pearl-Yafe M, Yolcu ES, Stein J, Kaplan O, Shirwan H, Yaniv I, Askenasy N . Expression of Fas and Fas-ligand in donor hematopoietic stem and progenitor cells is dissociated from the sensitivity to apoptosis. Exp Hematol 2007; 35: 1601–1612.

    Article  CAS  Google Scholar 

  18. Pearl-Yafe M, Mizrahi K, Stein J, Stein J, Yolcu ES, Kaplan O et al. Tumor necrosis factor receptors support murine hematopoietic progenitor function in the early stages of engraftment. Stem Cells 2010; 28: 1270–1280.

    CAS  PubMed  Google Scholar 

  19. Mizrahi K, Stein J, Pearl-Yafe M, Kaplan O, Yaniv I, Askenasy N . Regulatory functions of TRAIL in hematopoietic progenitors: human umbilical cord blood and murine bone marrow transplantation. Leukemia 2010; 24: 1325–1334.

    Article  CAS  Google Scholar 

  20. Mizrahi K, Stein J, Kaplan O, Yaniv I, Zipori D, Askenasy N . Resistance of hematopoietic progenitors to Fas-mediated apoptosis is actively sustained by NFκB with a characteristic transcriptional signature. Stem Cell Dev 2013; 23: 676–686.

    Article  Google Scholar 

  21. Pearl-Yafe M, Stein J, Yolcu ES, Farkas DL, Shirwan H, Yaniv I et al. Fas transduces dual apoptotic and trophic signals in hematopoietic progenitors. Stem Cells 2007; 25: 3194–3203.

    Article  Google Scholar 

  22. Mizrahi K, Stein J, Yaniv I, Kaplan O, Askenasy N . TNF-α has tropic rather than apoptotic activity in human hematopoietic progenitors: involvement of TNF receptor-1 and caspase-8. Stem Cells 2013; 31: 156–166.

    Article  CAS  Google Scholar 

  23. Saheki K, Fujimori Y, Takemoto Y, Kakishita E . Increased expression of Fas (APO-1, CD95) on CD34+ haematopoietic progenitor cells after allogeneic bone marrow transplantation. Br J Haematol 2000; 109: 447–452.

    Article  CAS  Google Scholar 

  24. Pearl-Yafe M, Yolcu ES, Stein J, Kaplan O, Yaniv I, Shirwan H et al. Fas ligand enhances hematopoietic cell engraftment through abrogation of alloimmune responses and nonimmunogenic interactions. Stem Cells 2007; 25: 1448–1455.

    Article  CAS  Google Scholar 

  25. Askenasy EM, Shushlav Y, Sun Z, Shirwan H, Yolcu ES, Askenasy N . Engineering of bone marrow cells with fas-ligand protein-enhances donor-specific tolerance to solid organs. Transplant Proc 2011; 43: 3545–3548.

    Article  CAS  Google Scholar 

  26. Askenasy N, Ash S, Yaniv I, Stein J . Depletion of naïve lymphocytes with Fas ligand ex vivo prevents graft-versus-host disease without impairing T cell support of engraftment or graft-versus-tumor activity. Biol Blood Marrow Transplant 2013; 19: 185–195.

    Article  CAS  Google Scholar 

  27. Mizrahi K, Yaniv I, Ash S, Stein J, Askenasy N . Apoptotic signaling through Fas and TNF receptors ameliorates GvHD in mobilized peripheral blood grafts. Bone Marrow Transplant (e-pub ahead of print 24 February 2014; doi:10.1038/bmt.2014.12).

    Article  CAS  Google Scholar 

  28. Peled T, Shoham H, Aschengrau D, Yackoubov D, Frei G, Rosenheimer GN et al. Nicotinamide, a SIRT1 inhibitor, inhibits differentiation and facilitates expansion of hematopoietic progenitor cells with enhanced bone marrow homing and engraftment. Exp Hematol 2012; 40: 342–355.

    Article  CAS  Google Scholar 

  29. Maciejewski J, Selleri C, Anderson S, Young NS . Fas antigen expression on CD34+ human marrow cells is induced by interferon gamma and tumor necrosis factor alpha and potentiates cytokine-mediated hematopoietic suppression in vitro. Blood 1995; 85: 3183–3190.

    CAS  PubMed  Google Scholar 

  30. Bryder D, Ramsfjell V, Dybedal I, Theilgaard-Mönch K, Högerkorp CM, Adolfsson J et al. Self-renewal of multipotent long-term repopulating hematopoietic stem cells is negatively regulated by Fas and tumor necrosis factor receptor activation. J Exp Med 2001; 194: 941–952.

    Article  CAS  Google Scholar 

  31. Guenechea G, Segovia JC, Albella B, Lamana M, Ramírez M, Regidor C et al. Delayed engraftment of nonobese diabetic severe combined immunodeficient mice transplanted with ex vivo–expanded human CD34 cord blood cells. Blood 1999; 93: 1097–1105.

    CAS  PubMed  Google Scholar 

  32. Glimm H, Oh IH, Eaves CJ . Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G(2)/ M transit and do not reenter G(0). Blood 2000; 96: 4185–4193.

    CAS  PubMed  Google Scholar 

  33. Ratajczak J, Kucia M, Reca R, Zhang J, Machalinski B, Ratajczak MZ . Quiescent CD34+ early erythroid progenitors are resistant to several erythropoietic 'inhibitory' cytokines; role of FLIP. Br J Haematol 2003; 123: 160–169.

    Article  CAS  Google Scholar 

  34. Takenaka K, Nagafuji K, Harada M, Mizuno S, Miyamoto T, Makino S et al. In vitro expansion of hematopoietic progenitor cells induces functional expression of Fas antigen (CD95). Blood 1996; 88: 2871–2877.

    CAS  PubMed  Google Scholar 

  35. Santiago-Schwarz F, Borrero M, Tucci J, Palaia T, Carsons SE . In vitro expansion of CD13+CD33+ dendritic cell precursors from multipotent progenitors is regulated by a discrete fas-mediated apoptotic schedule. J Leukoc Biol 1997; 62: 493–502.

    Article  CAS  Google Scholar 

  36. Askenasy N, Yaniv I, Stein J, Sharkis SJ . Our perception of developmental plasticity: esse est percipi (to be is to be perceived)? Curr Stem Cell Res Ther 2006; 1: 85–94.

    Article  CAS  Google Scholar 

  37. Mizrahi K, Askenasy N . Activation and crosstalk between TNF family receptors in umbilical cord blood cells is not responsible for loss of engraftment capacity following culture. Am J Stem Cells 2013; 2: 155–164.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Frassoni F, Gualandi F, Podestà M, Raiola AM, Ibatici A, Piaggio G et al. Direct intrabone transplant of unrelated cord-blood cells in acute leukaemia: a phase I/II study. Lancet Oncol 2008; 9: 831–839.

    Article  CAS  Google Scholar 

  39. Rocha V, Labopin M, Ruggeri A, Podestà M, Gallamini A, Bonifazi F et al. Unrelated cord blood transplantation: outcomes after single-unit intrabone injection compared with double-unit intravenous injection in patients with hematological malignancies. Transplantation 2013; 95: 1284–1291.

    Article  Google Scholar 

  40. Harris DT, LoCascio J, Besencon FJ . Analysis of the alloreactive capacity of human umbilical cord blood: implications for graft-versus-host disease. Bone Marrow Transplant 1994; 14: 545–553.

    CAS  PubMed  Google Scholar 

  41. Aggarwal S, Gupta A, Nagata S, Gupta S . Programmed cell death (apoptosis) in cord blood lymphocytes. J Clin Immunol 1997; 17: 63–73.

    Article  CAS  Google Scholar 

  42. Sato K, Nagayama H, Takahashi TA . Aberrant CD3- and CD28-mediated signaling events in cord blood T cells are associated with dysfunctional regulation of Fas ligand-mediated cytotoxicity. J Immunol 1999; 162: 4464–4471.

    CAS  PubMed  Google Scholar 

  43. Risdon G, Gaddy J, Stehman FB, Broxmeyer HE . Proliferative and cytotoxic responses of human cord blood T lymphocytes following allogeneic stimulation. Cell Immunol 1994; 154: 14–24.

    Article  CAS  Google Scholar 

  44. El Ghalbzouri A, Drennou B, Blancheteau V . An in vitro model of allogeneic stimulation of cord blood: induction of Fas independent apoptosis. Hum Immunol 1999; 60: 598–607.

    Article  CAS  Google Scholar 

  45. Lin SJ, Cheng PJ, Hsiao SS, Lin HH, Kuo ML . Differential effect of IL-15 and IL-2 on survival of PHA-activated umbilical cord blood T cells. Am J Hematol 2005; 80: 106–112.

    Article  CAS  Google Scholar 

  46. Lin SJ, Lee CC, Cheng PJ, See LC, Kuo ML . Susceptibility to Fas and TNF-α receptor mediated apoptosis of anti-CD3/anti-CD28-activated umbilical cord blood T cells. Pediatr Allergy Immunol 2000; 20: 392–398.

    Article  Google Scholar 

  47. Rocha V, Cornish J, Sievers EL, Filipovich A, Locatelli F, Peters C et al. Comparison of outcomes of unrelated bone marrow and umbilical cord blood transplants in children with acute leukemia. Blood 2001; 97: 2962–2971.

    Article  CAS  Google Scholar 

  48. Rocha V, Broxmeyer HE . New approaches for improving engraftment after cord blood transplantation. Biol Blood Marrow Transplant 2010; 16 (Suppl. 1): S126–S132.

    Article  Google Scholar 

  49. Gluckman E, Rocha V, Boyer-Chammard A, Locatelli F, Arcese W, Pasquini I et al. Outcome of cord-blood transplantation from related and unrelated donors. Eurocord Transplant Group and the European Blood and Marrow Transplantation Group. New Engl J Med 1997; 337: 373–381.

    Article  CAS  Google Scholar 

  50. Laughlin MJ, Barker J, Bambach B, Koc ON, Rizzieri DA, Wagner JE et al. Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. New Engl J Med 2001; 344: 1815–1822.

    Article  CAS  Google Scholar 

  51. Moscardó F, Sanz J, Senent L, Cantero S, de la Rubia J, Montesinos P et al. Impact of hematopoietic chimerism at day +14 on engraftment after unrelated donor umbilical cord blood transplantation for hematologic malignancies. Haematologica 2009; 94: 827–832.

    Article  Google Scholar 

  52. Hamza NS, Lisgaris M, Yadavalli G, Nadeau L, Fox R, Fu P et al. Kinetics of myeloid and lymphocyte recovery and infectious complications after unrelated umbilical cord blood versus HLA-matched unrelated donor allogeneic transplantation in adults. Br J Haematol 2004; 124: 488–498.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the Frankel Trust for Experimental Bone Marrow Transplantation. We thank Mrs Ela Zuzovsky and Mrs Ana Zemliansky for their outstanding technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Askenasy.

Ethics declarations

Competing interests

Dr Tony Peled has ownership interest in Gamida Cell. The other authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizrahi, K., Ash, S., Peled, T. et al. Negative selection by apoptosis enriches progenitors in naïve and expanded human umbilical cord blood grafts. Bone Marrow Transplant 49, 942–949 (2014). https://doi.org/10.1038/bmt.2014.79

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2014.79

Search

Quick links