Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The role of the endothelium in the short-term complications of hematopoietic SCT

Abstract

In this review, we analyse the role of the endothelium in the development of several complications that appear soon after haematopoietic SCT (HSCT). Once it had been demonstrated that sinusoidal damage is the initiating event of the sinusoidal obstruction syndrome, it was considered that other short-term complications with overlapping clinical manifestations, such as capillary leak syndrome, engraftment syndrome, transplant-associated microangiopathy, diffuse alveolar haemorrhage and idiopathic pneumonia syndrome, could have an endothelial origin. During HSCT, endothelial cells (ECs) are activated and damaged by several factors, including conditioning, cytokines released by damaged tissues, endotoxins translocated through damaged mucosa, drugs used in the procedure, the engraftment, and—in the allogeneic setting—immunological reactions. The different clinical syndromes that occur could be determined by the predominant phenotypic change in the ECs and the location of this change (organ dependant or systemic). Several translational studies have provided evidence of this endothelial dysfunction on the basis of analysis of soluble markers, soluble forms of adhesion molecules, the enumeration of circulating ECs and microparticles, and morphologic and functional changes induced in cultured ECs. This increased knowledge has opened up a wide range of potential pharmacologic interventions to prevent or treat endothelial damage and, consequently, to improve the outcome of patients receiving HSCT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ljungman P, Bregni M, Brune M, Cornelissen J, de Witte T, Dini G et al. Allogeneic and autologous transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe 2009. Bone Marrow Transplant 2010; 45: 219–234.

    Article  CAS  PubMed  Google Scholar 

  2. McDonald GB, Hinds MS, Fisher LD, Schoch HG, Wolford JL, Banaji M et al. Veno-occlusive disease of the liver and multiorgan failure after bone marrow transplantation: a cohort study of 355 patients. Ann Intern Med 1993; 118: 255–267.

    Article  CAS  PubMed  Google Scholar 

  3. Jones RJ, Lee KS, Beschorner WE, Vogel VG, Grochow LB, Braine HG et al. Venoocclusive disease of the liver following bone marrow transplantation. Transplantation 1987; 44: 778–783.

    Article  CAS  PubMed  Google Scholar 

  4. Carreras E, Bertz H, Arcese W, Vernant JP, Tomás JF, Hagglund H et al. Incidence and outcome of hepatic veno-occlusive disease after blood or marrow transplantation: a prospective cohort study of the European Group for Blood and Marrow Transplantation. Blood 1998; 92: 3599–3604.

    CAS  PubMed  Google Scholar 

  5. DeLeve LD, Shulman HM, McDonald GB . Toxic injury to hepatic sinusoids: sinusoidal obstruction syndrome (veno-occlusive disease). Semin Liver Dis 2002; 22: 27–42. (review).

    Article  PubMed  Google Scholar 

  6. Kumar S, DeLeve LD, Kamath PS, Tefferi A . Hepatic veno-occlusive disease (sinusoidal obstruction syndrome) after hematopoietic stem cell transplantation. Mayo Clin Proc 2003; 78: 589–598.

    Article  PubMed  Google Scholar 

  7. DeLeve LD, Wang X, McCuskey MK, McCuskey RS . Rat liver endothelial cells isolated by anti-CD31 immunomagnetic separation lack fenestrae and sieve plates. Am J Physiol Gastrointest Liver Physiol 2006; 291: G1187–G1189.

    Article  CAS  PubMed  Google Scholar 

  8. Aird WC . Endothelium in health and disease. Pharmacol Rep 2008; 60: 139–143.

    PubMed  Google Scholar 

  9. Eissner G, Multhoff G, Holler E . Influence of bacterial endotoxin on the allogenicity of human endothelial cells. Bone Marrow Transplant 1998; 21: 1286–1288.

    Article  CAS  PubMed  Google Scholar 

  10. Fusté B, Mazzara R, Escolar G, Merino A, Ordinas A, Díaz-Ricart M . Granulocyte colony-stimulating factor increases expression of adhesion receptors on endothelial cells through activation of p38 MAPK. Haematologica 2004; 89: 578–585.

    PubMed  Google Scholar 

  11. Mercanoglu F, Turkmen A, Kocaman O, Pinarbasi B, Dursun M, Selcukbiricik F et al. Endothelial dysfunction in renal transplant patients is closely related to serum cyclosporine levels. Transplant Proc 2004; 36: 1357–1360.

    Article  CAS  PubMed  Google Scholar 

  12. Biedermann BC . Vascular endothelium: checkpoint for inflammation and immunity. News Physiol Sci 2001; 16: 84–88.

    CAS  PubMed  Google Scholar 

  13. Cooke KR, Jannin A, Ho V . The contribution of endothelial activation and injury to end-organ toxicity following allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2008; 14: 23–32.

    Article  PubMed  Google Scholar 

  14. Carreras E . Early complications after HSCT. In: Apperley J, Carreras E, Gluckman E, Gratwohl A, Mazzi T (eds). Haematopoietic Stem Cell Transplantation. Forum Service Editore: Genova, 2008, pp 180–195.

    Google Scholar 

  15. Palomo M, Diaz-Ricart M, Carbo C, Rovira M, Fernandez-Aviles F, Martine C et al. Endothelial dysfunction after hematopoietic stem cell transplantation: role of the conditioning regimen and the type of transplantation. Biol Blood Marrow Transplant 2010; 16: 985–993.

    Article  CAS  PubMed  Google Scholar 

  16. Biedermann BC . Vascular endothelium and graft-versus-host disease. Best Pract Res Clin Haematol 2008; 21: 129–138.

    Article  CAS  PubMed  Google Scholar 

  17. Tichelli A, Passweg J, Wójcik D, Rovó A, Harousseau JL, Masszi T et al. Late cardiovascular events after allogeneic hematopoietic stem cell transplantation: a retrospective multicenter study of the late effects working party of the european group for blood and marrow transplantation. Haematologica 2008; 93: 1203–1210.

    Article  PubMed  Google Scholar 

  18. Richard S, Seigneur M, Blann A, Adams R, Renard M, Puntous M et al. Vascular endothelial lesion in patients undergoing bone marrow transplantation. Bone Marrow Transplant 1996; 18: 955–959.

    CAS  PubMed  Google Scholar 

  19. Catani L, Gugliotta L, Vianelli N, Nocentini F, Baravelli S, Bandini G et al. Endothelium and bone marrow transplantation. Bone Marrow Transplant 1996; 17: 277–280.

    CAS  PubMed  Google Scholar 

  20. Zeigler ZR, Rosenfeld CS, Andrews DF, Nemunaitis J, Raymond JM, Shadduck RK et al. Plasma von Willebrand factor antigen (vWF:AG) and thrombomodulin (TM) levels in adult thrombotic thrombocytopenic purpura/hemolytic uremic syndromes (TTP/HUS) and bone marrow transplant-associated thrombotic microangiopathy (BMT-TM). Am J Hematol 1996; 53: 213–220.

    Article  CAS  PubMed  Google Scholar 

  21. Salat C, Holler E, Kolb HJ, Pihusch R, Reinhardt B, Hiller E . Endothelial cell markers in bone marrow transplant recipients with and without acute graft-versus-host disease. Bone Marrow Transplant 1997; 19: 909–914.

    Article  CAS  PubMed  Google Scholar 

  22. Nurnberger W, Michelmann I, Burdach S, Gobel U . Endothelial dysfunction after bone marrow transplantation: increase of soluble thrombomodulin and PAI-1 in patients with multiple transplant-related complications. Ann Hematol 1998; 76: 61–65.

    Article  CAS  PubMed  Google Scholar 

  23. Takatsuka H, Wakae T, Mori A, Okada M, Okamoto T, Kakishita E . Effects of total body irradiation on the vascular endothelium. Clin Transplant 2002; 16: 374–377.

    Article  PubMed  Google Scholar 

  24. Matsuda Y, Hara J, Osugi Y, Tokimasa S, Fujisaki H, Takai K et al. Serum levels of soluble adhesion molecules in stem cell transplantation-related complications. Bone Marrow Transplant 2001; 27: 977–982.

    Article  CAS  PubMed  Google Scholar 

  25. Park YD, Yoshioka A, Kawa K, Ishizashi H, Yagi H, Yamamoto Y et al. Impaired activity of plasma von Willebrand factor-cleaving protease may predict the occurrence of hepatic veno-occlusive disease after stem cell transplantation. Bone Marrow Transplant 2002; 29: 789–794.

    Article  PubMed  Google Scholar 

  26. Luzzatto G, Cella G, Messina C, Randi ML, Sbarai A, Zanesco L . Markers of endothelial function in pediatric stem cell transplantation for acute leukemia. Med Pediatr Oncol 2003; 40: 9–12.

    Article  PubMed  Google Scholar 

  27. Rio B, Petropoulou AD, Mirshahi P, Soria J, Rendu F, Samama MM et al. Endothelial cell markers’ kinetics following umbilical cord blood transplantation. Leuk Lymphoma 2008; 49: 2209–2212.

    Article  PubMed  Google Scholar 

  28. Cutler C, Kim HT, Ayanian S, Bradwin G, Revta C, Aldridge J et al. Prediction of veno-occlusive disease using biomarkers of endothelial injury. Biol Blood Marrow Transplant 2010; 16: 1180–1185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Palomo M, Diaz-Ricart M, Carbo C, Rovira M, Fernandez-Aviles F, Escolar G et al. The release of soluble factors contributing to endothelial activation and damage after hematopoietic stem cell transplantation is not limited to the allogeneic setting and involves several pathogenic mechanisms. Biol Blood Marrow Transplant 2009; 15: 537–546.

    Article  CAS  PubMed  Google Scholar 

  30. Palomo M, Diaz-Ricart M, Rovira M, Escolar G, Carreras E . Defibrotide prevents the activation of macrovascular and microvascular endothelia caused by autologous hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2011; 17: 497–506.

    Article  CAS  PubMed  Google Scholar 

  31. Ogura H, Tanaka H, Koh T, Fujita K, Fujimi S, Nakamori Y et al. Enhanced production of endothelial microparticles with increased binding to leukocytes in patients with severe systemic inflammatory response syndrome. J Trauma 2004; 56: 823–830.

    Article  PubMed  Google Scholar 

  32. Blann AD, Woywodt A, Bertolini F, Bull TM, Buyon JP, Clancy RM et al. Circulating endothelial cells. Biomarker of vascular disease. Thromb Haemost 2005; 93: 228–235.

    Article  CAS  PubMed  Google Scholar 

  33. Pihusch V, Rank A, Steber R, Pihusch M, Pihusch R, Toth B et al. Endothelial cell-derived microparticles in allogeneic hematopoietic stem cell recipients. Transplantation 2006; 81: 1405–1409.

    Article  PubMed  Google Scholar 

  34. Woywodt A, Haubitz M, Buchholz S, Hertenstein B . Counting the cost: markers of endothelial damage in hematopoietic stem cell transplantation. Bone Marrow Transplant 2004; 34: 1015–1023.

    Article  CAS  PubMed  Google Scholar 

  35. Woywodt A, Scheer J, Hambach L, Buchholz S, Ganser A, Haller H et al. Circulating endothelial cells as a marker of endothelial damage in allogeneic hematopoietic stem cell transplantation. Blood 2004; 103: 3603–3605.

    Article  CAS  PubMed  Google Scholar 

  36. Eissner G, Kohlhuber F, Grell M, Buchholz S, Ganser A, Haller H et al. Critical involvement of transmembrane tumor necrosis factor-alpha in endothelial programmed cell death mediated by ionizing radiation and bacterial endotoxin. Blood 1995; 86: 4184–4193.

    CAS  PubMed  Google Scholar 

  37. Eissner G, Multhoff G, Gerbitz A, Kirchner S, Bauer S, Haffner S et al. Fludarabine induces apoptosis, activation, and allogenicity in human endothelial and epithelial cells: protective effect of defibrotide. Blood 2002; 100: 334–340.

    Article  CAS  PubMed  Google Scholar 

  38. Ganster A, Brucker I, Holler E, Hahn J, Bremm H, Andreesen R et al. In vitro monitoring of endothelial complications following hematopoietic allogeneic stem cell transplantation. Bone Marrow Transplant 2004; 33: 355–357.

    Article  CAS  PubMed  Google Scholar 

  39. Carreras E . Veno-occlusive disease of the liver after hemopoietic cell transplanttation. Eur J Haematol 2000; 64: 281–291.

    Article  CAS  PubMed  Google Scholar 

  40. Richardson PG, Elias AD, Krishnan A, Wheeler C, Nath R, Hoppensteadt D et al. Treatment of severe veno-occlusive disease with defibrotide: compassionate use results in response without significant toxicity in a high-risk population. Blood 1998; 92: 737–744.

    CAS  PubMed  Google Scholar 

  41. Richardson PG, Murakami C, Jin Z, Warren D, Momtaz P, Hoppensteadt D et al. Multi-institutional use of defibrotide in 88 patients after stem cell transplantation with severe veno-occlusive disease and multisystem organ failure: response without significant toxicity in a high-risk population and factors predictive of outcome. Blood 2002; 100: 4337–4343.

    Article  CAS  PubMed  Google Scholar 

  42. Richardson PG, Soiffer RJ, Antin JH, Uno H, Jin Z, Kurtzberg J et al. Defibrotide for the treatment of severe hepatic veno-occlusive disease and multiorgan failure after stem cell transplantation: a multicenter, randomized, dose-finding trial. Biol Blood Marrow Transplant 2010; 16: 1005–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Corbacioglu S, Cesaro S, Faraci M, Valteau-Couanet D, Gruhn B, Boelens JJ et al. Defibrotide prevents hepatic VOD and reduces significantly VOD-associated complications in children at high risk: final results of a prospective phase II/III muticentre study. Bone Marrow Transplant 2010; 45 (Suppl 2): S1.

    Google Scholar 

  44. Beşişik SK, Oztürk GB, Calişkan Y, Sargin D . Complete resolution of transplantation-associated thrombotic microangiopathy and hepatic veno-occlusive disease by defibrotide and plasma exchange. Turk J Gastroenterol 2005; 16: 34–37.

    PubMed  Google Scholar 

  45. Pescador R, Porta R, Ferro L . An integrated view of the activities of defibrotide. Semin Thromb Hemost 1996; 22 (Suppl 1): 71–75.

    PubMed  Google Scholar 

  46. Eissner G, Iacobelli M, Blüml S, Burger V, Haffner S, Andreesen R et al. Oligotide, a defibrotide derivative, protects human microvascular endothelial cells against fludarabine-induced activation, damage and allogenicity. Bone Marrow Transplant 2005; 35: 915–920.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by grants: FIS PI081056 (Fondo de Investigaciones de la Seguridad Social), German José Carreras Leukaemia Foundation (R 07/41v), SAF 2009-10365 (Ministerio de Ciencia y Tecnología), RD06/0009/1003 (Red HERACLES, Instituto de Salud Carlos III).

We thank Jordi Bozzo for providing the images included in Figures 1 and 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Carreras.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carreras, E., Diaz-Ricart, M. The role of the endothelium in the short-term complications of hematopoietic SCT. Bone Marrow Transplant 46, 1495–1502 (2011). https://doi.org/10.1038/bmt.2011.65

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2011.65

Keywords

This article is cited by

Search

Quick links