Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pre-Clinical Studies

Extracorporeal photopheresis in addition to pentostatin in conditioning for canine hematopoietic cell transplantation: role in engraftment

Abstract

Extracorporeal photopheresis (ECP) and the purine analog pentostatin exert potent immunomodulatory effects, but have not been evaluated for their ability to enhance engraftment of hematopoietic stem cells. We evaluated, in a canine model of dog leukocyte antigen (DLA)-identical hematopoietic cell transplantation (HCT), whether ECP in combination with pentostatin could enhance engraftment using a nonmyeloablative regimen consisting of 100 cGy TBI and postgrafting immunosuppression with mycophenolate mofetil and CYA. We have shown previously that with 100 cGy TBI alone as conditioning, all of the six dogs rejected their grafts 2–12 weeks after HCT. With the addition of pentostatin to 100 cGy TBI, 6 of 10 dogs rejected their graft. We now tested the additional use of ECP alone (n=2) or ECP and 3–6 doses of pentostatin (n=7) before 100 cGy TBI and HCT. Eight out of nine dogs rejected their grafts within 6–11 weeks after HCT. Compared with data without ECP, we failed to demonstrate a positive impact of the use of either ECP or pentostatin for prevention of rejection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Storb R, Yu C, Wagner JL, Deeg HJ, Nash RA, Kiem H-P et al. Stable mixed hematopoietic chimerism in DLA-identical littermate dogs given sublethal total body irradiation before and pharmacological immunosuppression after marrow transplantation. Blood 1997; 89: 3048–3054.

    CAS  PubMed  Google Scholar 

  2. McSweeney PA, Niederwieser D, Shizuru JA, Sandmaier BM, Molina AJ, Maloney DG et al. Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood 2001; 97: 3390–3400.

    Article  CAS  PubMed  Google Scholar 

  3. Panse JP, Storb R, Storer B, Santos EB, Wentzel C, Sandmaier BM . Prolonged allogeneic marrow engraftment following nonmyeloablative conditioning using 100 cGy total body irradiation and pentostatin before and pharmocological immunosuppression after transplantation. Transplantation 2005; 80: 1518–1521.

    Article  CAS  PubMed  Google Scholar 

  4. Hogan WJ, Little M-T, Zellmer E, Friedetzky A, Diaconescu R, Gisburne S et al. Postgrafting immunosuppression with sirolimus and cyclosporine facilitates stable mixed hematopoietic chimerism in dogs given sublethal total body irradiation before marrow transplantation from DLA-identical littermates. Biol Blood Marrow Transplant 2003; 9: 489–495.

    Article  CAS  PubMed  Google Scholar 

  5. Sorror ML, Leisenring W, Mielcarek M, Baron F, Diaconescu R, Hogan WJ et al. Intensified postgrafting immunosuppression failed to assure long-term engraftment of dog leukocyte antigen-identical canine marrow grafts after 1 gray total body irradiation. Transplantation 2008; 85: 1023–1029.

    Article  CAS  PubMed  Google Scholar 

  6. Zic JA, Stricklin GP, Greer JP, Kinney MC, Shyr Y, Wilson DC et al. Long-term follow-up of patients with cutaneous T-cell lymphoma treated with extracorporeal photochemotherapy. J Am Acad Dermatol 1996; 35: 935–945.

    Article  CAS  PubMed  Google Scholar 

  7. Berger CL . Experimental murine and primate models for dissection of the immunosuppressive potential of photochemotherapy in autoimmune disease and transplantation (Review). Yale Journal of Biology & Medicine 1989; 62: 611–620.

    CAS  Google Scholar 

  8. Dall’Amico R, Rossetti F, Zulian F, Montini G, Murer L, Andreetta B et al. Photopheresis in paediatric patients with drug-resistant chronic graft-versus-host disease. Br J Haematol 1997; 97: 848–854.

    Article  PubMed  Google Scholar 

  9. Foss FM, Gorgun G, Miller KB . Extracorporeal photopheresis in chronic graft-versus-host disease (Review). Bone Marrow Transplant 2002; 29: 719–725.

    Article  CAS  PubMed  Google Scholar 

  10. Giunti G, Schurfeld K, Maccherini M, Tanganelli P, Rubegni P, Alfani D et al. Photopheresis for recurrent acute rejection in cardiac transplantation. Transplant Proc 1999; 31: 128–129.

    Article  CAS  PubMed  Google Scholar 

  11. Horina JH, Mullegger RR, Horn S, Holzer H, Halwachs G, Kerl H et al. Photopheresis for renal allograft rejection. Lancet 1995; 346: 61.

    Article  CAS  PubMed  Google Scholar 

  12. Oliven A, Shechter Y . Extracorporeal photopheresis: a review (Review). Blood Rev 2001; 15: 103–108.

    Article  CAS  PubMed  Google Scholar 

  13. Greinix HT, Volc-Platzer B, Rabitsch W, Gmeinhart B, Guevara-Pineda C, Kalhs P et al. Successful use of extracorporeal photochemotherapy in the treatment of severe acute and chronic graft-versus-host disease. Blood 1998; 92: 3098–3104.

    CAS  PubMed  Google Scholar 

  14. Brogden RN, Sorkin EM . Pentostatin: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in lymphoproliferative disorders. Drugs 1993; 46: 652–677.

    Article  CAS  PubMed  Google Scholar 

  15. Chan GW, Gorgun G, Miller KB, Foss FM . Persistence of host dendritic cells after transplantation is associated with graft-versus-host disease. Biol Blood Marrow Transplant 2003; 9: 170–176.

    Article  PubMed  Google Scholar 

  16. Chan GW, Foss FM, Klein AK, Sprague K, Miller KB . Reduced-intensity transplantation for patients with myelodysplastic syndrome achieves durable remission with less graft-versus-host disease. Biol Blood Marrow Transplant 2003; 9: 753–759.

    Article  PubMed  Google Scholar 

  17. Pavletic SZ, Bociek RG, Foran JM, Rubocki RJ, Kuszynski CA, Wisecarver JL et al. Lymphodepleting effects and safety of pentostatin for nonmyeloablative allogeneic stem-cell transplantation. Transplantation 2003; 76: 877–881.

    Article  CAS  PubMed  Google Scholar 

  18. Miller KB, Roberts TF, Chan G, Schenkein DP, Lawrence D, Sprague K et al. A novel reduced intensity regimen for allogeneic hematopoietic stem cell transplantation associated with a reduced incidence of graft-versus-host disease. Bone Marrow Transplant 2004; 33: 881–889.

    Article  CAS  PubMed  Google Scholar 

  19. Wagner JL, Burnett RC, Works JD, Storb R . Molecular analysis of DLA-DRBB1 polymorphism. Tissue Antigens 1996; 48: 554–561.

    Article  CAS  PubMed  Google Scholar 

  20. Wagner JL, Burnett RC, DeRose SA, Francisco LV, Storb R, Ostrander EA . Histocompatibility testing of dog families with highly polymorphic microsatellite markers. Transplantation 1996; 62: 876–877.

    Article  CAS  PubMed  Google Scholar 

  21. Wagner JL, Works JD, Storb R . DLA-DRB1 and DLA-DQB1 histocompatibility typing by PCR-SSCP and sequencing (Brief Communication). Tissue Antigens 1998; 52: 397–401.

    Article  CAS  PubMed  Google Scholar 

  22. Ladiges WC, Storb R, Graham T, Thomas ED . Experimental techniques used to study the immune system of dogs and other large animals. In: Gay WI, Heavener JE (eds). Methods of Animal Experimentation. Academic Press: New York, NY, 1989, pp 103–133.

    Google Scholar 

  23. Raff RF, Deeg HJ, Farewell VT, DeRose S, Storb R . The canine major histocompatibility complex. Population study of DLA-D alleles using a panel of homozygous typing cells. Tissue Antigens 1983; 21: 360–373.

    Article  CAS  PubMed  Google Scholar 

  24. Loughran Jr TP, Deeg HJ, Storb R . Morphologic and phenotypic analysis of canine natural killer cells: Evidence for T-cell lineage. Cell Immunol 1985; 95: 207–217.

    Article  PubMed  Google Scholar 

  25. Yu C, Ostrander E, Bryant E, Burnett R, Storb R . Use of (CA)n polymorphisms to determine the origin of blood cells after allogeneic canine marrow grafting. Transplantation 1994; 58: 701–706.

    Article  CAS  PubMed  Google Scholar 

  26. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C . A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 1995; 184: 39–51.

    Article  CAS  PubMed  Google Scholar 

  27. Foss FM . The role of purine analogues in low-intensity regimens with allogeneic hematopoietic stem cell transplantation (Review). Semin Hematol 2006; 43: S35–S43.

    Article  CAS  PubMed  Google Scholar 

  28. Yoo EK, Rook AH, Elenitsas R, Gasparro FP, Vowels BR . Apoptosis induction of ultraviolet light A and photochemotherapy in cutaneous T-cell Lymphoma: relevance to mechanism of therapeutic action. J Invest Dermatol 1996; 107: 235–242.

    Article  CAS  PubMed  Google Scholar 

  29. Bladon J, Taylor PC . Extracorporeal photopheresis induces apoptosis in the lymphocytes of cutaneous T-cell lymphoma and graft-versus-host disease patients. Br J Haematol 1999; 107: 707–711.

    Article  CAS  PubMed  Google Scholar 

  30. Owsianowski M, Gollnick H, Siegert W, Schwerdtfeger R, Orfanos CE . Successful treatment of chronic graft-versus-host disease with extracorporeal photopheresis. Bone Marrow Transplant 1994; 14: 845–848.

    CAS  PubMed  Google Scholar 

  31. Couriel DR, Hosing C, Saliba R, Shpall EJ, Anderlini P, Rhodes B et al. Extracorporeal photochemotherapy for the treatment of steroid-resistant chronic GVHD. Blood 2006; 107: 3074–3080.

    Article  CAS  PubMed  Google Scholar 

  32. Perfetti P, Carlier P, Strada P, Gualandi F, Occhini D, van Lint MT et al. Extracorporeal photopheresis for the treatment of steroid refractory acute GVHD. Bone Marrow Transplant 2008; 42: 609–617.

    Article  CAS  PubMed  Google Scholar 

  33. Gorgun G, Miller KB, Foss FM . Immunologic mechanisms of extracorporeal photochemotherapy in chronic graft-versus-host disease. Blood 2002; 100: 941–947.

    Article  CAS  PubMed  Google Scholar 

  34. Tambur AR, Ortegel JW, Morales A, Klingemann H, Gebel HM, Tharp MD . Extracorporeal photopheresis induces lymphocyte but not monocyte apoptosis. Transplant Proc 2000; 32: 747–748.

    Article  CAS  PubMed  Google Scholar 

  35. Alcindor T, Gorgun G, Miller KB, Roberts TF, Sprague K, Schenkein DP et al. Immunomodulatory effects of extracorporeal photochemotherapy in patients with extensive chronic graft-versus-host disease. Blood 2001; 98: 1622–1625.

    Article  CAS  PubMed  Google Scholar 

  36. Biagi E, Di Biaso I, Leoni V, Gaipa G, Rossi V, Bugarin C et al. Extracorporeal photochemotherapy is accompanied by increasing levels of circulating CD4+CD25+GITR+Foxp3+CD62 L+ functional regulatory T-cells in patients with graft-versus-host disease. Transplantation 2007; 84: 31–39.

    Article  CAS  PubMed  Google Scholar 

  37. Di Renzo M, Sbano P, De Aloe G, Pasqui AL, Rubegni P, Ghezzi A et al. Extracorporeal photopheresis affects co-stimulatory molecule expression and interleukin-10 production by dendritic cells in graft-versus-host disease patients. Clin Exp Immunol 2008; 151: 407–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zaucha JM, Zellmer E, Georges G, Little M-T, Storb R, Storer B et al. G-CSF-mobilized peripheral blood mononuclear cells added to marrow facilitates engraftment in nonmyeloablated canine recipients: CD3 cells are required. Biol Blood Marrow Transplant 2001; 7: 613–619.

    Article  CAS  PubMed  Google Scholar 

  39. Storb R, Yu C, Zaucha JM, Deeg HJ, Georges G, Kiem H-P et al. Stable mixed hematopoietic chimerism in dogs given donor antigen, CTLA4Ig, and 100 cGy total body irradiation before and pharmacologic immunosuppression after marrow transplant. Blood 1999; 94: 2523–2529.

    CAS  PubMed  Google Scholar 

  40. Jochum C, Beste M, Zellmer E, Graves SS, Storb R . CD154 blockade and donor-specific transfusions in DLA-identical marrow transplantation in dogs conditioned with 1–Gy total body irradiation. Biol Blood Marrow Transplant 2007; 13: 164–171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Francisco LV, Langston AA, Mellersh CS, Neal CL, Ostrander EA . A class of highly polymorphic tetranucleotide repeats for canine genetic mapping. Mamm Genome 1996; 7: 359–362.

    Article  CAS  PubMed  Google Scholar 

  42. Reichert WL, Stein JE, French B, Goodwin P, Varanasi U . Storage phosphor imaging technique for detection and quantitation of DNA adducts measured by the 32P-postlabeling assay. Carcinogenesis 1992; 13: 1475–1479.

    Article  CAS  PubMed  Google Scholar 

  43. Moore PF, Rossitto PV, Danilenko DM, Wielenga JJ, Raff RF, Severns E . Monoclonal antibodies specific for canine CD4 and CD8 define functional T-lymphocyte subsets and high density expression of CD4 by canine neutrophils. Tissue Antigens 1992; 40: 75–85.

    Article  CAS  PubMed  Google Scholar 

  44. Sandmaier BM, Storb R, Appelbaum FR, Gallatin WM . An antibody that facilitates hematopoietic engraftment recognizes CD44. Blood 1990; 76: 630–635.

    CAS  PubMed  Google Scholar 

  45. Sandmaier BM, Schuening FG, Bianco JA, Rosenman SJ, Bernstein I, Goehle S et al. Biochemical characterization of a unique canine myeloid antigen. Leukemia 1991; 5: 125–130.

    CAS  PubMed  Google Scholar 

  46. Denkers E, Badger CC, Ledbetter JA, Bernstein ID . Influence of antibody isotype on passive serotherapy of lymphoma. J Immunol 1985; 135: 2183–2186.

    CAS  PubMed  Google Scholar 

  47. Jacobsen CN, Aasted B, Broe MK, Petersen JL . Reactivities of 20 anti-human monoclonal antibodies with leucocytes from ten different animal species. Veterinary Immunology & Immunopathology 1993; 39: 461–466.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Michele Spector, DVM for providing veterinary care along with the investigators who participated in the weekend treatments and the technicians in the canine facilities of the Fred Hutchinson Cancer Research Center. We are grateful to Roche for kindly providing MMF. We also thank Stacy Zellmer for coordination of dog use and DLA-typing. We are also grateful for the assistance of Helen Crawford, Bonnie Larson and Sue Carbonneau in manuscript preparation. We are grateful for research funding from the National Institutes of Health, Bethesda, MD Grants P01HL036444, P01CA078902 and P30CA015704. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or its subsidiary Institutes and Centers. In addition, this work was supported by a grant from Therakos Incorporated and Supergen Incorporated. WAB was supported by a fellowship from Deutsche Krebshilfe, Dr Mildred-Scheel-Stiftung für Krebsforschung. FRK was supported by a grant from FAPESP/Brazil and an award from the Oncology Research Faculty Development Program from the Department of Health and Human Services, NIH, Bethesda, MD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B M Sandmaier.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Bone Marrow Transplantation website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bethge, W., Kerbauy, F., Santos, E. et al. Extracorporeal photopheresis in addition to pentostatin in conditioning for canine hematopoietic cell transplantation: role in engraftment. Bone Marrow Transplant 46, 1382–1388 (2011). https://doi.org/10.1038/bmt.2010.301

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2010.301

Keywords

This article is cited by

Search

Quick links