Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Infectious Complications

The risk of early and late CMV DNAemia associated with Campath use in stem cell transplant recipients

Abstract

The risks associated with in vivo and ex vivo use of Campath-1H and -1G in a cohort of 206 stem cell transplant recipients for human CMV (HCMV) DNAemia have been quantified. DNAemia showed a biphasic incidence pattern with an inflexion at day 60. The first phase had a linear risk rate for HCMV DNAemia of 0.3% per day, whereas the second phase had a substantially lower risk rate of 0.058% per day. In multivariable analyses, risk factors for early DNAemia were HCMV serostatus, radiotherapy-based conditioning and CD34 stem cell dose, with the use of in vivo Campath-1H having the most significant risk (hazards ratio=3.68; 95% CI=2.02–6.72; P<0.001). Ex vivo use of Campath was not associated with an increased risk for HCMV DNAemia. Patients receiving either in vivo Campath-1H or -1G experienced HCMV DNAemia earlier (27 and 33 days, respectively) compared with patients receiving no Campath (time to DNAemia, 51 days; P=0.0006). Multivariable analysis of risk factors for HCMV DNAemia occurring beyond 100 days after transplant were older age, acute GVHD>grade II and a lower CD34 stem cell dose, whereas Campath-1H use was not associated with late HCMV DNAemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Boeckh M, Gooley TA, Myerson D, Cunningham T, Schoch G, Bowden RA . Cytomegalovirus pp65 antigenemia-guided early treatment with ganciclovir versus ganciclovir at engraftment after allogeneic marrow transplantation: a randomized double-blind study. Blood 1996; 88: 4063–4071.

    CAS  PubMed  Google Scholar 

  2. Li CR, Greenberg PD, Gilbert MJ, Goodrich JM, Riddell SR . Recovery of HLA-restricted cytomegalovirus (CMV)-specific T-cell responses after allogeneic bone marrow transplant: correlation with CMV disease and effect of ganciclovir prophylaxis. Blood 1994; 83: 1971–1979.

    CAS  PubMed  Google Scholar 

  3. Gerna G, Lilleri D, Caldera D, Furione M, Zenone Bragotti L, Alessandrino EP . Validation of a DNAemia cutoff for preemptive therapy of cytomegalovirus infection in adult hematopoietic stem cell transplant recipients. Bone Marrow Transplant 2008; 41: 873–879.

    Article  CAS  PubMed  Google Scholar 

  4. Singh N . Antiviral drugs for cytomegalovirus in transplant recipients: advantages of preemptive therapy. Rev Med Virol 2006; 16: 281–287.

    Article  CAS  PubMed  Google Scholar 

  5. Avetisyan G, Larsson K, Aschan J, Nilsson C, Hassan M, Ljungman P . Impact on the cytomegalovirus (CMV) viral load by CMV-specific T-cell immunity in recipients of allogeneic stem cell transplantation. Bone Marrow Transplant 2006; 38: 687–692.

    Article  CAS  PubMed  Google Scholar 

  6. Morita-Hoshi Y, Heike Y, Kawakami M, Sugita T, Miura O, Kim SW et al. Functional analysis of cytomegalovirus-specific T lymphocytes compared to tetramer assay in patients undergoing hematopoietic stem cell transplantation. Bone Marrow Transplant 2008; 41: 515–521.

    Article  CAS  PubMed  Google Scholar 

  7. Widmann T, Sester U, Gartner BC, Schubert J, Pfreundschuh M, Kohler H et al. Levels of CMV specific CD4 T cells are dynamic and correlate with CMV viremia after allogeneic stem cell transplantation. PLoS ONE 2008; 3: e3634.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lilleri D, Fornara C, Chiesa A, Caldera D, Alessandrino EP, Gerna G . Human cytomegalovirus-specific CD4+ and CD8+ T-cell reconstitution in adult allogeneic hematopoietic stem cell transplant recipients and immune control of viral infection. Haematologica 2008; 93: 248–256.

    Article  PubMed  Google Scholar 

  9. Peggs KS, Preiser W, Kottaridis PD, McKeag N, Brink NS, Tedder RS et al. Extended routine polymerase chain reaction surveillance and pre-emptive antiviral therapy for cytomegalovirus after allogeneic transplantation. Br J Haematol 2000; 111: 782–790.

    CAS  PubMed  Google Scholar 

  10. Boeckh M, Leisenring W, Riddell SR, Bowden RA, Huang ML, Myerson D et al. Late cytomegalovirus disease and mortality in recipients of allogeneic hematopoietic stem cell transplants: importance of viral load and T-cell immunity. Blood 2003; 101: 407–414.

    Article  CAS  PubMed  Google Scholar 

  11. Nakamae H, Kirby KA, Sandmaier BM, Norasatthada L, Maloney DG, Maris MB et al. Effect of conditioning regimen intensity on CMV infection in allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 2009; 15: 694–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hale G, Bright S, Chumbley G, Hoang T, Metcalf D, Munro AJ et al. Removal of T cells from bone marrow for transplantation: a monoclonal antilymphocyte antibody that fixes human complement. Blood 1983; 62: 873–882.

    CAS  PubMed  Google Scholar 

  13. Waldmann H, Polliak A, Hale G, Or R, Cividalli G, Weiss L et al. Elimination of graft-versus-host disease by in-vitro depletion of alloreactive lymphocytes with a monoclonal rat anti-human lymphocyte antibody (CAMPATH-1). Lancet 1984; 2: 483–486.

    Article  CAS  PubMed  Google Scholar 

  14. Bunjes D . T cell depletion of allogeneic stem cell grafts with anti-CD 52 monoclonal antibodies: the Ulm experience from 1983-1999. Transfus Sci 2000; 23: 151–162.

    Article  CAS  PubMed  Google Scholar 

  15. Hale G, Zhang MJ, Bunjes D, Prentice HG, Spence D, Horowitz MM et al. Improving the outcome of bone marrow transplantation by using CD52 monoclonal antibodies to prevent graft-versus-host disease and graft rejection. Blood 1998; 92: 4581–4590.

    CAS  PubMed  Google Scholar 

  16. Willemze R, Richel DJ, Falkenburg JH, Hale G, Waldmann H, Zwaan FE et al. In vivo use of Campath-1G to prevent graft-versus-host disease and graft rejection after bone marrow transplantation. Bone Marrow Transplant 1992; 9: 255–261.

    CAS  PubMed  Google Scholar 

  17. Williams RJ, Clarke E, Blair A, Evely R, Hale G, Waldmann H et al. Impact on T-cell depletion and CD34+ cell recovery using humanised CD52 monoclonal antibody (CAMPATH-1H) in BM and PSBC collections; comparison with CAMPATH-1M and CAMPATH-1G. Cytotherapy 2000; 2: 5–14.

    Article  CAS  PubMed  Google Scholar 

  18. Phillips J, Drumm A, Harrison P, Bird P, Bhamra K, Berrie E et al. Manufacture and quality control of CAMPATH-1 antibodies for clinical trials. Cytotherapy 2001; 3: 233–242.

    Article  CAS  PubMed  Google Scholar 

  19. Chakrabarti S, Mackinnon S, Chopra R, Kottaridis PD, Peggs K, O’Gorman P et al. High incidence of cytomegalovirus infection after nonmyeloablative stem cell transplantation: potential role of Campath-1H in delaying immune reconstitution. Blood 2002; 99: 4357–4363.

    Article  CAS  PubMed  Google Scholar 

  20. Junghanss C, Boeckh M, Carter RA, Sandmaier BM, Maris MB, Maloney DG et al. Incidence and outcome of cytomegalovirus infections following nonmyeloablative compared with myeloablative allogeneic stem cell transplantation, a matched control study. Blood 2002; 99: 1978–1985.

    Article  CAS  PubMed  Google Scholar 

  21. Pawson R, Potter MN, Theocharous P, Lawler M, Garg M, Yin JA et al. Treatment of relapse after allogeneic bone marrow transplantation with reduced intensity conditioning (FLAG+/-Ida) and second allogeneic stem cell transplant. Br J Haematol 2001; 115: 622–629.

    Article  CAS  PubMed  Google Scholar 

  22. Dreger P, Viehmann K, Steinmann J, Eckstein V, Muller-Ruchholtz W, Loffler H et al. G-CSF-mobilized peripheral blood progenitor cells for allogeneic transplantation: comparison of T cell depletion strategies using different CD34+ selection systems or CAMPATH-1. Exp Hematol 1995; 23: 147–154.

    CAS  PubMed  Google Scholar 

  23. Kidd IM, Fox JC, Pillay D, Charman H, Griffiths PD, Emery VC . Provision of prognostic information in immunocompromised patients by routine application of the polymerase chain reaction for cytomegalovirus. Transplantation 1993; 56: 867–871.

    Article  CAS  PubMed  Google Scholar 

  24. Mattes FM, Hainsworth EG, Geretti AM, Nebbia G, Prentice G, Potter M, Burroughs AK et al. A randomised control trial comparing ganciclovir to ganciclovir plus foscarnet (each at half dose) for preemptive therapy of cytomegalovirus infection in transplant recipients. J Infect Dis 2004; 189: 1355–1361.

    Article  CAS  PubMed  Google Scholar 

  25. Glucksberg H, Storb R, Fefer A, Buckner CD, Neiman PE, Clift RA et al. Clinical manifestations of graft-versus-host disease in human recipients of marrow from HL-A-matched sibling donors. Transplantation 1974; 18: 295–304.

    Article  CAS  PubMed  Google Scholar 

  26. Cox DR . Regression models and life tables (with discussion). J R Stat B 1972; 34: 187–220.

    Google Scholar 

  27. Ljungman P, Griffiths PD, Paya C . Definitions of cytomegalovirus infection and disease in transplant recipients. Clin Infect Dis 2002; 34: 1094–1097.

    Article  PubMed  Google Scholar 

  28. Grob JP, Grundy JE, Prentice HG, Griffiths PD, Hoffbrand AV, Hughes MD et al. Immune donors can protect marrow-transplant recipients from severe cytomegalovirus infections. Lancet 1987; 1: 774–776.

    Article  CAS  PubMed  Google Scholar 

  29. Morris EC, Rebello P, Thomson KJ, Peggs KS, Kyriakou C, Goldstone AH et al. Pharmacokinetics of alemtuzumab used for in vivo and in vitro T-cell depletion in allogeneic transplantations: relevance for early adoptive immunotherapy and infectious complications. Blood 2003; 102: 404–406.

    Article  CAS  PubMed  Google Scholar 

  30. Rebello P, Cwynarski K, Varughese M, Eades A, Apperley JF, Hale G . Pharmacokinetics of CAMPATH-1H in BMT patients. Cytotherapy 2001; 3: 261–267.

    Article  CAS  PubMed  Google Scholar 

  31. Klangsinsirikul P, Carter GI, Byrne JL, Hale G, Russell NH . Campath-1G causes rapid depletion of circulating host dendritic cells (DCs) before allogeneic transplantation but does not delay donor DC reconstitution. Blood 2002; 99: 2586–2591.

    Article  CAS  PubMed  Google Scholar 

  32. Chakrabarti S, MacDonald D, Hale G, Holder K, Turner V, Czarnecka H et al. T-cell depletion with Campath-1H ‘in the bag’ for matched related allogeneic peripheral blood stem cell transplantation is associated with reduced graft-versus-host disease, rapid immune constitution and improved survival. Br J Haematol 2003; 121: 109–118.

    Article  PubMed  Google Scholar 

  33. Novitzky N, Thomas V, Hale G, Waldmann H . Campath-1 Abs ‘in the bag’ for hematological malignancies: the Cape Town experience. Cytotherapy 2004; 6: 172–181.

    Article  CAS  PubMed  Google Scholar 

  34. Yanada M, Yamamoto K, Emi N, Naoe T, Suzuki R, Taji H et al. Cytomegalovirus antigenemia and outcome of patients treated with pre-emptive ganciclovir: retrospective analysis of 241 consecutive patients undergoing allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2003; 32: 801–807.

    Article  CAS  PubMed  Google Scholar 

  35. Soderberg-Naucler C, Fish KN, Nelson JA . Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell 1997; 91: 119–126.

    Article  CAS  PubMed  Google Scholar 

  36. Mohty M, Jacot W, Faucher C, Bay JO, Zandotti C, Collet L et al. Infectious complications following allogeneic HLA-identical sibling transplantation with antithymocyte globulin-based reduced intensity preparative regimen. Leukemia 2003; 17: 2168–2177.

    Article  CAS  PubMed  Google Scholar 

  37. Hakki M, Riddell SR, Storek J, Carter RA, Stevens-Ayers T, Sudour P et al. Immune reconstitution to cytomegalovirus after allogeneic hematopoietic stem cell transplantation: impact of host factors, drug therapy, and subclinical reactivation. Blood 2003; 102: 3060–3067.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Wellcome Trust programme grant and a UK Medical research Council Centre Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V C Emery.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buyck, H., Prentice, H., Griffiths, P. et al. The risk of early and late CMV DNAemia associated with Campath use in stem cell transplant recipients. Bone Marrow Transplant 45, 1212–1219 (2010). https://doi.org/10.1038/bmt.2009.329

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2009.329

Keywords

This article is cited by

Search

Quick links