Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation


Evidence for abrupt climate changes on millennial and shorter timescales is widespread in marine and terrestrial climate records1,2,3,4. Rapid reorganization of ocean circulation is considered to exert some control over these changes5, as are shifts in the concentrations of atmospheric greenhouse gases6. The response of the climate system to these two influences is fundamentally different: slowing of thermohaline overturn in the North Atlantic Ocean is expected to decrease northward heat transport by the ocean and to induce warming of the tropical Atlantic7,8, whereas atmospheric greenhouse forcing should cause roughly synchronous global temperature changes9. So these two mechanisms of climate change should be distinguishable by the timing of surface-water temperature variations relative to changes in deep-water circulation. Here we present a high-temporal-resolution record of sea surface temperatures from the western tropical North Atlantic Ocean which spans the past 29,000 years, derived from measurements of temperature-sensitive alkenone unsaturation in sedimentary organic matter. We find significant warming is documented for Heinrich event H1 (16,900–15,400 calendar years bp) and the Younger Dryas event (12,900–11,600 cal. yr bp), which were periods of intense cooling in the northern North Atlantic. Temperature changes in the tropical and high-latitude North Atlantic are out of phase, suggesting that the thermohaline circulation was the important trigger for these rapid climate changes.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Temperature evolution of the western tropical Atlantic Ocean and of the Arctic and Antarctic during the past 30,000 yr.


  1. Dansgaard,W. et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218– 220 (1993).

    ADS  Article  Google Scholar 

  2. Bond,G. et al. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143– 147 (1993).

    ADS  Article  Google Scholar 

  3. Charles,C. D., Lynch-Stieglitz,J., Ninnemann,U. S. & Fairbanks,R. G. Climate connections between the hemisphere revealed by deep sea sediment core/ice core correlations. Earth Planet. Sci. Lett. 142, 19–27 (1996).

    ADS  CAS  Article  Google Scholar 

  4. Bard,E., Rostek,F. & Sonzogni,C. Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry. Nature 385 , 707–710 (1997).

    ADS  CAS  Article  Google Scholar 

  5. Broecker,W. S., Peteet,D. M. & Rind,D. Does the ocean–atmosphere system have more than one stable mode of operation. Nature 315, 21–26 (1985).

    ADS  CAS  Article  Google Scholar 

  6. Broecker,W. S. Massive iceberg discharges as triggers for global climate change. Nature 372, 421–424 ( 1994).

    ADS  CAS  Article  Google Scholar 

  7. Crowley,T. J. North Atlantic Deep Water cools the southern hemisphere. Paleoceanography 7, 489–497 ( 1992).

    ADS  Article  Google Scholar 

  8. Manabe,S. & Stouffer,R. J. Coupled ocean-atmosphere model response to freshwater input: Comparison to Younger Dryas event. Paleoceanography 12, 321–336 (1997).

    ADS  Article  Google Scholar 

  9. Manabe,S., Stouffer,R. J., Spelman,M. J. & Bryan,K. Transient response of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. J. Clim. 4, 785–818 ( 1991).

    ADS  Article  Google Scholar 

  10. Blunier,T. et al. Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 394, 739– 743 (1998).

    ADS  CAS  Article  Google Scholar 

  11. Vidal,L. et al. Link between the North and South Atlantic during the Heinrich events of the last glacial period. Clim. Dyn. (in the press).

  12. Thompson,L. G. et al. A 25,000-year tropical climate history from Bolivian ice cores. Science 282, 1858– 1864 (1998).

    ADS  CAS  Article  Google Scholar 

  13. Lowell,T. V. et al. Interhemispheric correlation of Late Pleistocene glacial events. Science 269, 1541– 1549 (1995).

    ADS  CAS  Article  Google Scholar 

  14. Prahl,F. G. & Wakeham,S. G. Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment. Nature 330, 367–369 ( 1987).

    ADS  CAS  Article  Google Scholar 

  15. Müller,P. J., Kirst,G., Ruhland,G., von Storch,I. & Rosell-Melé,A. Calibration of the alkenone paleotemperature index UK 37 based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S). Geochim. Cosmochim. Acta 62, 1757– 1772 (1998).

    ADS  Article  Google Scholar 

  16. Sonzogni,C. et al. Temperature and salinity effects on alkenone ratios measured in surface sediments from the Indian Ocean. Quat. Res. 47, 344–355 (1997).

    CAS  Article  Google Scholar 

  17. Pelejero,C. & Grimalt,J. O. The correlation between UK 37 index and sea surface temperatures in the warm boundary: The South China Sea. Geochim. Cosmochim. Acta 61, 4789–4797 (1997).

    ADS  CAS  Article  Google Scholar 

  18. Prahl,F. G., de Lange,G. J., Lyle,M. & Sparrow,M. A. Post-depositional stability of long-chain alkenones under contrasting redox conditions. Nature 341, 434–437 ( 1989).

    ADS  CAS  Article  Google Scholar 

  19. Broecker,W. Glacial climate in the tropics. Science 272, 1902–1904 (1996).

    ADS  CAS  Article  Google Scholar 

  20. CLIMAP Project Members Seasonal Reconstruction of the Earth's Surface at the Last Glacial Maximum (Map & Chart Ser. MC-3, Geol. Soc. Am., Boulder, Colorado, 1981).

  21. Guilderson,T. P., Fairbanks,R. G. & Rubenstone,J. L. Tropical temperature variations since 20,000 years ago: Modulating interhemispheric climate change. Science 263, 663–665 (1994).

    ADS  CAS  Article  Google Scholar 

  22. Mix,A. C., Morey,A. E., Pisias,N. G. & Hostetler,S. W. Foraminiferal fauna estimates of paleotemperature: Circumventing the no-analog problem yields cool ice age tropics. Paleoceanography 14, 350–359 (1999).

    ADS  Article  Google Scholar 

  23. Hastings,D. W., Russell,A. D. & Emerson,S. R. Foraminiferal magnesium in Globigerinoides sacculifer as a paleotemperature proxy. Paleoceanography 13, 161–169 (1998).

    ADS  Article  Google Scholar 

  24. Schrag,D. P., Hampt,G. & Murray,D. W. Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean. Science 272, 1930–1932 (1996).

    ADS  CAS  Article  Google Scholar 

  25. Fairbanks,R. G. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637–642 ( 1989).

    ADS  Article  Google Scholar 

  26. Betts,A. K. & Ridgway,W. Tropical boundary layer equilibrium in the last ice age. J. Geophys. Res. 97, 2529–2534 (1992).

    ADS  Article  Google Scholar 

  27. Crowley,T. J. & Baum,S. K. Effect of vegetation on an ice-age climate model simulation. J. Geophys. Res. 102, 16463–16480 (1997).

    ADS  CAS  Article  Google Scholar 

  28. Hüls,M. & Zahn,R. Millennial-scale SST variability in the western subtropical North Atlantic from planktonic foraminiferal census counts. Paleoceanography (submitted).

  29. Boyle,E. A. & Keigwin,L. North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature 330, 35–40 (1987).

    ADS  CAS  Article  Google Scholar 

  30. Arz,H. W., Pätzold,J. & Wefer,G. The deglacial history of the western tropical Atlantic as inferred from high resolution stable isotope records off northeastern Brazil. Earth Planet. Sci. Lett. 167, 105– 117 (1999).

    ADS  CAS  Article  Google Scholar 

  31. Zhao,M., Beveridge,N. A. S., Shackleton,N. J., Sarnthein,M. & Eglinton,G. Molecular stratigraphy of cores off northwest Africa: Sea surface temperature history over the last 80 ka. Paleoceanography 10, 661– 675 (1995).

    ADS  Article  Google Scholar 

  32. Villanueva,J. & Grimalt,J. O. Gas chromatographic tuning of the UK 37 paleothermometer. Anal. Chem. 69, 3329–3332 (1997).

    CAS  Article  Google Scholar 

  33. Hughen,K. A. et al. Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391, 65– 68 (1998).

    ADS  CAS  Article  Google Scholar 

  34. Stuiver,M. & Reimer, P. J. Extended 14C data base and revised CALIB 3. 0 14C age calibration program. Radiocarbon 35, 215–230 (1993).

    Article  Google Scholar 

  35. Johnsen,S. J., Dansgaard,W., Clausen,H. B. & Langway,C. C. Oxygen isotope profiles through the Antarctic and Greenland ice sheets. Nature 235, 429–434 ( 1972).

    ADS  CAS  Article  Google Scholar 

Download references


We thank A. Rosell-Melé, R. Schneider and A. Paul for comments on the manuscript, M. Hüls for discussions, and P. Grootes and staff of the Leibnitz-Labor in Kiel for providing AMS 14C datings. This work was supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Carsten Rühlemann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rühlemann, C., Mulitza, S., Müller, P. et al. Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation. Nature 402, 511–514 (1999).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing