Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The temporal requirement for endothelin receptor-B signalling during neural crest development

Abstract

Endothelin receptor B (EDNRB) is a G-protein-coupled receptor with seven transmembrane domains which is required for the development of melanocytes and enteric neurons. Mice that are homozygous for a null mutation in the Ednrb gene are almost completely white and die as juveniles from megacolon. To determine when EDNRB signalling is required during embryogenesis, we have exploited the tetracycline-inducible system to generate strains of mice in which the endogenous Ednrb locus is under the control of the tetracycline-dependant transactivators tTa or rtTA. By using this system to express Ednrb at different stages of embryogenesis, we have determined that EDNRB is required during a restricted period of neural crest development between embryonic days 10 and 12.5. Moreover, our results imply that EDNRB is required for the migration of both melanoblasts and enteric neuroblasts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Establishing tet-responsive alleles of Ednrb.
Figure 2: Kinetics of Ednrb regulation by dox.
Figure 3: The temporal requirement for Ednrb signalling.
Figure 4: Detection of melanoblasts and enteric neuroblasts by in situ hydridization.
Figure 5: Ednrb signalling is required during melanoblast migration.

Similar content being viewed by others

References

  1. Le Douarin,N. M. The Neural Crest (Cambridge Univ. Press, Cambridge, 1982).

    Google Scholar 

  2. Anderson,D. J. et al. Cell lineage determination and the control of neuronal identity in the neural crest. Cold Spring Harb. Symp. Quant. Biol. 62, 493–504 (1997).

    Article  CAS  Google Scholar 

  3. Silvers,W. K. The Coat Colors of Mice: A Model for Mammalian Gene Action and Interaction (Springer, New York, 1979).

    Book  Google Scholar 

  4. Barsh,G. S. The genetics of pigmentation: from fancy genes to complex traits. Trends Genet. 12, 299–305 (1996).

    Article  CAS  Google Scholar 

  5. Hosoda,K. et al. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 79, 1267–1276 (1994).

    Article  CAS  Google Scholar 

  6. Baynash,A. G. et al. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell 79, 1277–1285 ( 1994).

    Article  CAS  Google Scholar 

  7. Bedell,M. A., Largaespada,D. A., Jenkins, N. A. & Copeland,N. G. Mouse models of human disease. Part II: recent progress and future directions. Genes Dev. 11, 11–43 (1997).

    Article  Google Scholar 

  8. Jackson,I. J. Homologous pigmentation mutations in human, mouse and other model organisms. Hum. Mol. Genet. 6, 1613– 1624 (1997).

    Article  CAS  Google Scholar 

  9. Pavan,W. J. & Tilghman,S. M. Piebald lethal (sl) acts early to disrupt the development of neural crest-derived melanocytes. Proc. Natl Acad. Sci. USA 91, 7159– 7163 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Lahav,R., Ziller,C., Dupin,E. & Le Douarin,N. M. Endothelin 3 promotes neural crest cell proliferation and mediates a vast increase in melanocyte number in culture. Proc. Natl Acad. Sci. USA 93, 3892–3892 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Reid,K. et al. Multiple roles for endothelin in melanocyte development: regulation of progenitor number and stimulation of differentiation. Development 122, 3911–3919 ( 1996).

    CAS  PubMed  Google Scholar 

  12. Yoshida,H., Kunisada,T., Kusakabe,M., Nishikawa,S. & Nishikawa, S. I. Distinct stages of melanocyte differentiation revealed by analysis of nonuniform pigmentation patterns. Development 122, 1207–1214 (1996).

    CAS  PubMed  Google Scholar 

  13. Schneuwly,S., Klemenz,R. & Gehring, W. J. Redesigning the body plan of Drosophila by ectopic expression of the homeotic gene Antennapedia. Nature 325, 816–818 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Fischer,J. A., Giniger,E., Maniatis,T. & Ptashne,M. GAL4 activates transcription in Drosophila. Nature 332, 853–856 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Gingrich,J. R. & Roder,J. Inducible gene expression in the nervous system of transgenic mice. Annu. Rev. Neurosci. 21, 377–405 ( 1998).

    Article  CAS  Google Scholar 

  16. Gossen,M. & Bujard,H. Tight control of gene expression in mammalian cells by tetracycline- responsive promoters. Proc. Natl Acad. Sci. USA 89, 5547–5551 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Gossen,M. et al. Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Furth,P. A. et al. Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc. Natl Acad. Sci. USA 91, 9302–9306 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Kistner,A. et al. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc. Natl Acad. Sci. USA 93, 10933–10938 ( 1996).

    Article  ADS  CAS  Google Scholar 

  20. Mayford,M. et al. Control of memory formation through regulated expression of a CaMKII transgene. Science 274, 1678– 1683 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Ewald,D. et al. Time-sensitive reversal of hyperplasia in transgenic mice expressing SV40 T antigen. Science 273, 1384– 1386 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Mansuy,I. M. et al. Inducible and reversible gene expression with the rtTA system for the study of memory. Neuron 21, 257– 265 (1998).

    Article  CAS  Google Scholar 

  23. Rossant,J. & McMahon,A. “Cre”-ating mouse mutants—a meeting review on conditional mouse genetics. Genes Dev. 13, 142–145 (1999).

    Article  CAS  Google Scholar 

  24. Dixon,R. A. et al. Structural features required for ligand binding to the beta-adrenergic receptor. EMBO J. 6, 3269– 3275 (1987).

    Article  CAS  Google Scholar 

  25. Lakso,M. et al. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl Acad. Sci. USA 93, 5860–5865 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Shin,M. K., Russell,L. B. & Tilghman, S. M. Molecular characterization of four induced alleles at the Ednrb locus. Proc. Natl Acad. Sci. USA 94, 13105–13110 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Baron,U. et al. Generation of conditional mutants in higher eukaryotes by switching between the expression of two genes. Proc. Natl Acad. Sci. USA 96, 1013–1018 ( 1999).

    Article  ADS  CAS  Google Scholar 

  28. Serbedzija,G. N., Fraser,S. E. & Bronner-Fraser, M. Pathways of trunk neural crest cell migration in the mouse embryo as revealed by vital dye labelling. Development 108, 605–612 (1990).

    CAS  PubMed  Google Scholar 

  29. Steel,K. P., Davidson,D. R. & Jackson, I. J. TRP-2/DT, a new early melanoblast marker, shows that steel growth factor (c-kit ligand) is a survival factor. Development 115, 1111–1119 ( 1992).

    CAS  PubMed  Google Scholar 

  30. Wehrle-Haller,B. & Weston,J. A. Soluble and cell-bound forms of steel factor activity play distinct roles in melanocyte precursor dispersal and survival on the lateral neural crest migration pathway. Development 121, 731–742 (1995).

    CAS  PubMed  Google Scholar 

  31. Nakayama,A. et al. Mutations in microphthalmia, the mouse homolog of the human deafness gene MITF, affect neuroepithelial and neural crest-derived melanocytes differently. Mech. Dev. 70, 155– 166 (1998).

    Article  CAS  Google Scholar 

  32. Pachnis,V., Mankoo,B. & Costantini, F. Expression of the c-ret proto-oncogene during mouse embryogenesis. Development 119, 1005– 1017 (1993).

    CAS  PubMed  Google Scholar 

  33. Mackenzie,M. A., Jordan,S. A., Budd,P. S. & Jackson,I. J. Activation of the receptor tyrosine kinase Kit is required for the proliferation of melanoblasts in the mouse embryo. Dev. Biol. 192, 99– 107 (1997).

    Article  CAS  Google Scholar 

  34. Mayer,T. C. The migratory pathway of neural crest cells into the skin of mouse embryos. Dev. Biol. 34, 39–46 (1973).

    Article  CAS  Google Scholar 

  35. Newgreen,D. F. & Hartley,L. Extracellular matrix and adhesive molecules in the early development of the gut and its innervation in normal and spotting lethal rat embryos. Acta Anat. (Basel) 154, 243–260 (1995).

    Article  CAS  Google Scholar 

  36. Kapur,R. P., Sweetser,D. A., Doggett,B., Siebert,J. R. & Palmiter,R. D. Intercellular signals downstream of endothelin receptor-B mediate colonization of the large intestine by enteric neuroblasts. Development 121, 3787– 3795 (1995).

    CAS  PubMed  Google Scholar 

  37. Hearn,C. J., Murphy,M. & Newgreen, D. GDNF and ET-3 differentially modulate the numbers of avian enteric neural crest cells and enteric neurons in vitro. Dev. Biol. 197, 93–105 ( 1998).

    Article  CAS  Google Scholar 

  38. Wu,J. J., Chen,J. X., Rothman,T. P. & Gershon,M. D. Inhibition of in vitro enteric neuronal development by endothelin-3: mediation by endothelin B receptors. Development 126 , 1161–1173 (1999).

    CAS  PubMed  Google Scholar 

  39. Leibl,M. A. et al. Expression of endothelin 3 by mesenchymal cells of embryonic mouse caecum. Gut 44, 246– 252 (1999).

    Article  CAS  Google Scholar 

  40. Kuhn,R., Rajewsky,K. & Muller, W. Generation and analysis of interleukin-4 deficient mice. Science 254, 707–710 (1991).

    Article  ADS  CAS  Google Scholar 

  41. Jones,B. K., Levorse,J. M. & Tilghman, S. M. Igf2 imprinting does not require its own DNA methylation or H19 RNA. Genes Dev. 12, 2200– 2207 (1998).

    Article  CAS  Google Scholar 

  42. Swiatek,P. J. & Gridley,T. Perinatal lethality and defects in hindbrain development in mice homozygous for a targeted mutation of the zinc finger gene Krox20. Genes Dev. 7, 2071– 2084 (1993).

    Article  CAS  Google Scholar 

  43. Webber,A. L., Ingram,R. S., Levorse,J. M. & Tilghman,S. M. Location of enhancers is essential for the imprinting of H19 and Igf2 genes. Nature 391, 711–715 (1998).

    Article  ADS  CAS  Google Scholar 

  44. Wilkinson,D. G. & Nieto,M. A. Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol. 225, 361–373 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Henninghausen and H. Bujard for providing constructs; H. Westphal for providing EIIa-cre transgenic mice; the members of our laboratory for helpful discussions; and M. Cleary for critical comments on the manuscript. M.K.S. was a Jane Coffin Childs Postdoctoral Fellow and S.M.T. is an Investigator of the Howard Hughes Medical Institute. R.S.I. isolated and characterized the Ednrb genomic clones and J.M.L. injected the targeted ES cells into blastocysts. M.K.S. and S.M.T. were responsible for the design of the experiment and the writing of the manuscript, and M.K.S. for the generation of the targeting vectors, targeting of ES cells and analysing the mice.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, M., Levorse, J., Ingram, R. et al. The temporal requirement for endothelin receptor-B signalling during neural crest development. Nature 402, 496–501 (1999). https://doi.org/10.1038/990040

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/990040

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing