Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The Use of Quantitative Ultrasound in Assessing Bone Status in Newborn Preterm Infants

Abstract

OBJECTIVE: Quantitative ultrasound is increasingly used to assess bone status in adults and children; however, few studies have been carried out in neonates. Our objective was to determine if tibial bone speed of sound (SOS) correlates with gestational age and birth anthropometrics, and if bone SOS is related to maternal factors.

STUDY DESIGN: We prospectively studied 95 preterm infants to assess factors related to bone status as measured by quantitative ultrasound.

RESULTS: We found significant (p≤0.001) positive correlations between SOS and gestational age, birth weight, length, head circumference and tibial length. There was no significant relationship between SOS and prenatal steroid use, gestational diabetes, pre-eclampsia, race or parity.

CONCLUSIONS: Quantitative ultrasound is an easy to use and inexpensive tool for assessing bone status in preterm neonates. Tibial SOS correlated with gestational age and birth anthropometrics, and was not related by few maternal factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Taeusch W, Ballard R, Avery's Disease of the NewBorn, 7th edn. London: WB Saunders Company; 1998. p. 970–973.

  2. Backstrom MC, Kuusela AL, Maki R . Metabolic bone disease of prematurity. Ann Med 1996;28:275–282.

    Article  CAS  Google Scholar 

  3. Prins SH, Jorgensen HL, Jorgensen LV, Hassager C . The role of quantitative ultrasound in the assessment of bone: a review. Clin Physiol 1998;18:3–17.

    Article  CAS  Google Scholar 

  4. Njeh CF, Fuerst T, Diessel E, Genant HK . Is quantitative ultrasound dependent on bone structure? A reflection. Osteoporos Int 2001;12:1–15.

    CAS  PubMed  Google Scholar 

  5. Ng DC, Sundram FX . Bone mineral density — correlation between quantitative ultrasound characteristics and dual energy X-ray absorptiometry. Ann Acad Med Singapore 1998;27:524–526.

    CAS  PubMed  Google Scholar 

  6. Van Rijn RR, van der Sluis IM, Lequin MH, et al. Tibial quantitative ultrasound versus whole body and lumber spine DXA in a Dutch pediatric and adolescent population. Invest Radiol 2000;35:548–552.

    Article  CAS  Google Scholar 

  7. Sundberg M, Gardsell P, Johnell O, Ornstein E, Sernbo I . Comparison of quantitative ultrasound measurements in calcaneus with DXA and SXA at other skeletal sites: a population-based study on 280 children aged 11–16 years. Osteoporos Int 1998;8:410–417.

    Article  CAS  Google Scholar 

  8. Jaworski M, Lebiedowski M, Lorenc RS, Trempe J . Ultrasound bone measurement in pediatric subjects. Calcif Tissue Int 1995;56:368–371.

    Article  CAS  Google Scholar 

  9. Lappe JM, Stegman M, Davies KM, Barber S, Recker RR . A prospective study of quantitative ultrasound in children and adolescents. J Clin Densitom 2000;3:167–175.

    Article  CAS  Google Scholar 

  10. Prevrhal S, Fuerst T, Fan B, et al. Quantitative ultrasound of the tibia depends on both cortical density and thickness. Osteoporos Int 2001;12:28–34.

    Article  CAS  Google Scholar 

  11. Lequin MH, Hop WC, Van Rijn RR, et al. Comparison between quantitative calcaneal and tibial ultrasound in a Dutch Caucasian pediatric and adolescent population. J Clin Densitom 2001;4:137–146.

    Article  CAS  Google Scholar 

  12. Lequin MH, Van Rijn RR, Robben SG, Hop WC, Van Kuij KC . Normal values for tibial quantitative ultrasonometry in Caucasian children and adolescents (aged 6–19 years). Calcif Tissue Int 2000;67:101–105.

    Article  CAS  Google Scholar 

  13. Nemet D, Dolfin T, Wolach B, Eliakim A . Quantitative ultrasound measurements of bone speed of sound in premature infants. Eur J Pediatr 2001;160:736–740.

    Article  CAS  Google Scholar 

  14. Littner Y, Mandel D, Mimouni FB, Dollberg S . Bone ultrasound velocity curves of newly born term and preterm infants. J Pediatr Endocrinol Metab 2003;16:43–47.

    Article  Google Scholar 

  15. Cummins SR, Bates D, Black DM . Clinical use of Bone Densitometry. JAMA 2002;288:1889–1896.

    Article  Google Scholar 

  16. Holm K, Dan A, Wilbur J, Li S, Walker J . A longitudinal study of bone density in midlife women. Health Care Women Int 2002;23:678–691.

    Article  Google Scholar 

  17. Koo WW, Hockman EM . Physiologic predictors of lumbar spine bone mass in neonates. Ped Res 2000;48:485–489.

    Article  CAS  Google Scholar 

  18. Medras M, Jankowska EA, Rogucka E . The effect of smoking tobacco and drinking of alcohol and coffee on bone mineral density of healthy men 40 years of age. Pol Arch Med Wewn 2000;103:187–193.

    CAS  PubMed  Google Scholar 

  19. Nociti Jr FH, Cesar NJ, Carvalho MD, Sallum EA . Bone density around titanium implants may be influenced by intermittent cigarette smoke inhalation: a histometric study in rats. Int J Oral Maxillofac Implants 2002;17:347–352.

    PubMed  Google Scholar 

  20. Blum M, Harris SS, Must A, Phillips SM, Rand WM, Dawson-Hughes B . Household tobacco exposure in negatively associated with premenopausal bone mass. Osteoporos Int 2002;13:663–668.

    Article  CAS  Google Scholar 

  21. Ueng SW, Lee SS, Lin SS, et al. Hyperbaric oxygen therapy mitigates the adverse effect of cigarette smoking on the bone healing of tibial lengthening: an experimental study on rabbits. J Trauma 1999;47:752–759.

    Article  CAS  Google Scholar 

  22. Ueng SW, Lin SS, Wang CR, Liu SJ, Tai CL, Shih CH . Bone healing of tibial lengthening is delayed by cigarette smoking: study of bone mineral density and torsional strength on rabbits. J Trauma 1999;46:110–115.

    Article  CAS  Google Scholar 

  23. Iwaniec UT, Fung YK, Cullen DM, Akhter MP, et al. Effects of nicotine on bone and calciotropic hormones in growing female rats. Calcif Tissue Int 2000;67:68–74.

    Article  CAS  Google Scholar 

  24. Iwaniec UT, Fung YK, Akhter MP, et al. Effects of nicotine on bone mass, turnover, and strength in adult female rats. Calcif Tissue Int Int 2001;68:358–364.

    Article  CAS  Google Scholar 

  25. Syversen U, Nordsletten L, Falch JA, Madsen JE, Nilsen OG, Waldum HL . Effect of lifelong nicotine inhalation on bone mass and mechanical properties in female rat femurs. Calcif Tissue Int 1999;65:246–249.

    Article  CAS  Google Scholar 

  26. Kesiak M, Gulczynska E, Nowakowska D, Wilczynski J . Influence of antenatal steroid therapy on newborn nervous system. Ginekol Pol 2002;73:709–718.

    PubMed  Google Scholar 

  27. McEvoy C, Bowling S, Williamson K, Stewart M, Durand M . Functional residual capacity and passive compliance measurements after antenatal steroid therapy in preterm infants. Pediatr Pulmonol 2001;31:425–430.

    Article  CAS  Google Scholar 

  28. Cattarelli D, Chirico G, Simeoni U . Renal effects of antenatally or postnatally administered steroids. Pediatr Med Chir 2002;24:157–162.

    CAS  PubMed  Google Scholar 

  29. AAP Committee on Fetus and Newborn Postnatal Corticosteroids to treat or prevent chronic lung disease in preterm infants. Pediatrics 2002;109:330–338.

  30. Bloom SL, Sheffield JS, Mc Intire DD, Leveno KJ . Antenatal dexamethasone and decreased birth weight. Obstet Gynecol 2001;97:485–490.

    CAS  PubMed  Google Scholar 

  31. Sonntag J, Gaude M . Effect of dexamethasone and spironolactone therapy in calcium and phosphate homeostasis in premature infants with a birth weight under 1.500 g. Klin Padiatr 1998;210:354–357.

    Article  CAS  Google Scholar 

  32. Kurl S, Heinonen K, Lansimies E . Effects of prematurity, intrauterine growth status and early dexamethasone treatment on postnatal bone mineralization. Arch Dis Child Fetal Neonatal Ed 2000;83:109–111.

    Article  Google Scholar 

  33. Lopez Ibarra PJ, Pastor MM, Escobar-Jimenez F, et al. Bone mineral density at time of clinical diagnostic of adult-onset type 1 diabetes mellitus. Endocr Pract 2001;7:346–351.

    Article  CAS  Google Scholar 

  34. Espallargues M, Sampietro-Colom Estrada MD, Sola M, del Rio L, Setoain J, Granados A . Identifying bone-mass-related risk factors for fracture to guide bone densitometry measurements: a systematic review of the literature. Osteoporosis Int 2000;12:811–822.

    Article  Google Scholar 

  35. Gunczler P, Lanes R, Paz-Martinez V, et al. Decreased lumbar spine bone mass and low bone turnover in children and adolescents with insulin dependent diabetes mellitus followed longitudinally. J Pediatric Endocrinol Metab 1998;11:413–419.

    Article  CAS  Google Scholar 

  36. Mimouni F, Steichen JJ, Tsang RC, Hertzberg V, Miodovnik M . Decreased bone mineral content in infants of diabetic mothers. Am J Perinatol 1988;5:339–343.

    Article  CAS  Google Scholar 

  37. Lequin MH, Van Rijn RR, Robben SG, et al. Evaluation of short-term precision for tibial ultrasonometry. Calcif Tissue Int 1999;64:24–27.

    Article  CAS  Google Scholar 

  38. Litmanovitz I, Dolfin T, Friedland O, et al. Early physical activity intervention prevents decrease of bone strength in very low birth weight infants. Pediatrics 2003;112:15–19.

    Article  Google Scholar 

  39. Eliakim A, Nemet D, Friedland O, Dolfin T, Regev R . Spontaneous activity in premature infants affects bone strength. J Perinatol 2002;22:650–652.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the kind assistance and editorial review by Dr Lewis Barness. We express our great appreciation for the help and enthusiastic support of the nursing staff of Tampa General Hospital NICU.

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by Sunlight Medical, Ltd

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereda, L., Ashmeade, T., Zaritt, J. et al. The Use of Quantitative Ultrasound in Assessing Bone Status in Newborn Preterm Infants. J Perinatol 23, 655–659 (2003). https://doi.org/10.1038/sj.jp.7211006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jp.7211006

This article is cited by

Search

Quick links