A missense substitution A49T in the steroid 5-alpha-reductase gene (SRD5A2) is not associated with prostate cancer in Finland

This article has been updated

Abstract

Prostatic steroid 5-alpha-reductase gene (SRD5A2) encodes a critical enzyme involved in the conversion of testosterone to dihydrotestosterone. A germline mis-sense substitution (A49T) leads to a variant SRD5A2 protein, which has a 5-fold higher in vitro Vmax than the wild-type protein (Ross et al, 1998; Makridakis et al, 1999). The A49T variant was recently associated with 2.5 to 3.28-fold increased risk of prostate cancer (PC) in African-American and Hispanic men (Makridakis et al, 1999). Also, Jaffe et al (2000) reported an association between A49T and more aggressive disease among Caucasian patients. Here, we report that the prevalence of the A49T variant in 449 Finnish PC patients was 6.0%, not significantly different from 6.3% observed in 223 patients with benign prostatic hyperplasia or 5.8% in 588 population-based controls (odds ratio for PC 1.04, 95% C.I. 0.62–1.76 P = 0.89). There was no association between A49T and the family history of the patients nor with tumour stage or grade. Our results argue against a prominent role of the A49T variant as a genetic risk factor for prostate cancer development and progression in the Finnish population. © 2001 Cancer Research Campaign

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  1. Berry R, Schroeder JJ, French AJ, McDonnell SK, Peterson BJ, Cunningham JM, Thibodeau SN and Schaid DJ (2000) Evidence for a prostate cancer-susceptibility locus on chromosome 20. Am J Hum Genet 67: 82–91

    CAS  Article  Google Scholar 

  2. Berthon P, Valeri A, Cohen-Akenine A, Drelon E, Paiss T, Wöhr G, Latil A, Millasseau P, Mellah I, Cohen N, Blanche H, Bellane-Chantelot C, Demenais F, Teillac P, Le Duc A, de Petriconi R, Hautmann R, Chumakov I, Bachner L, Maitland NJ, Lidereau R, Vogel W, Fournier G, Mangin P, Cohen D and Cussenot O (1998) Predisposing gene for early-onset prostate cancer, localized on chromosome 1q42.2–43. Am J Hum Genet 62: 1416–1424

    CAS  Article  Google Scholar 

  3. The Breast Cancer Linkage Consortium (1999) Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst 91: 1310–1316

  4. Cunha GR, Donjacour AA, Cooke PS, Mee S, Bigsby RM, Higgins SJ and Sugimura Y (1987) The endocrinology and developmental biology of the prostate. Endocr Rev 8: 338–362

    CAS  Article  Google Scholar 

  5. Davis DL and Russell DW (1993) Unusual length polymorphism in the human steroid 5 alpha-reductase type 2 gene (SRD5A2). Hum Mol Genet 2: 820

    CAS  Article  Google Scholar 

  6. Devgan SA, Henderson BE, Yu MC, Shi C-Y, Pike MC, Ross RK and Reichardt JKV (1997) Genetic variation of 3β-hydroxysteroid dehydrogenase type II in three racial/ethnic groups: implications for prostate cancer risk. Prostate 33: 9–12

    CAS  Article  Google Scholar 

  7. Febbo PG, Kantoff PW, Platz EA, Casey D, Batter S, Giovannucci E, Hennekens CH and Stampfer MJ (1999) The V89L Polymorphism in the 5α-reductase type 2 gene and risk of prostate cancer. Cancer Res 59: 5878–5881

    CAS  PubMed  Google Scholar 

  8. Ford D, Easton DF, Bishop DT, Narod SA and Goldgar DE (1994) Risks of cancer in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Lancet 343: 692–695

    CAS  Article  Google Scholar 

  9. Friedman LS, Szabo CI, Ostermeyer EA, Dowd P, Butler L, Park T, Lee MK, Goode EL, Rowell SE and King M-C (1995) Novel inherited mutations and variable expressivity of BRCA I alleles, including the founder mutation 185delAG in Ashkenazi Jewish families. Am J Hum Genet 57: 1284–1297

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gibbs M, Stanford JL, McIndoe TA, Jarvik GP, Kolb S, Goode EL, Chakrabarti L, Schuster EF, Buckley VA, Miller EL, Brandzel S, Li S, Hood L and Ostrander EA (1999) Evidence for a rare prostate cancer-susceptibility locus at chromosome 1p36. Am J Hum Genet 64: 776–787

    CAS  Article  Google Scholar 

  11. Gibbs M, Stanford JL, Jarvik GP, Janer M, Badzioch M, Peters MA, Goode EL, Kolb S, Chakrabarti L, Shook M, Basom R, Ostrander EA and Hood LA (2000) Genomic scan of families with prostate cancer identifies multiple regions of interest. Am J Human Genet 67: 100–109

    CAS  Article  Google Scholar 

  12. Giovannucci E, Stampfer MJ, Krithivas K, Brown M, Brufsky A, Talcott J, Hennekens CH and Kantoff PW (1997) The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci USA 94: 3320–3323

    CAS  Article  Google Scholar 

  13. Ingles SA, Ross RK, Yu MC, Irvine RA, La Pera G, Haile RW and Coetzee GA (1997) Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor. J Natl Cancer Inst 89: 166–170

    CAS  Article  Google Scholar 

  14. Irvine RA, Yu MC, Ross RK and Coetzee GA (1995) The CAG and GGC Microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res 55: 1937–1940

    CAS  Google Scholar 

  15. Jaffe JM, Malkowicz SB, Walker AH, MacBride S, Peschel R, Tomaszewski J, Van Arsdalen K, Wein AJ and Rebbeck TR (2000) Association of SRD5A2 genotype and pathological characteristics of prostate tumors. Cancer Res 60: 1626–1630

    CAS  PubMed  Google Scholar 

  16. Kantoff PW, Febbo PG, Giovannucci E, Krithivas K, Dahl DM, Chang G, Hennekens CH, Brown M and Stampfer MJ (1997) A polymorphism of the 5 alpha-reductase gene and its association with prostate cancer: a case-control analysis. Cancer Epidemiol Biomarkers Prev 6: 189–192

    CAS  PubMed  Google Scholar 

  17. Lunn RM, Bell DA, Mohler JL and Taylor JA (1999) Prostate cancer risk and polymorphism in 17 hydroxylase (CYP17) and steroid reductase (SRD5A2). Carcinogenesis 20: 1727–1731

    CAS  Article  Google Scholar 

  18. Makridakis N, Ross RK, Pike MC, Chang L, Stanczyk FZ, Kolonel LN, Shi C-Y, Yu MC, Henderson BE and Reichardt JKV (1997) A prevalent missense substitution that modulates activity of prostatic steroid 5α-reductase. Cancer Res 57: 1020–1022

    CAS  PubMed  Google Scholar 

  19. Makridakis NM, Ross RK, Pike MC, Crocitto LE, Kolonel LN, Pearce CL, Henderson BE and Reichardt JKV (1999) Association of mis-sense substitution in SRD5A2 gene with prostate cancer in African-American and Hispanic men in Los Angeles, USA. Lancet 354: 975–978

    CAS  Article  Google Scholar 

  20. Peltonen L (1997) Molecular background of the Finnish disease heritage. Ann Med 6: 553–556

    Article  Google Scholar 

  21. Reichardt JKV, Makridakis N, Henderson BE, Yu MC, Pike MC and Ross RK (1995) Genetic variability of the human SRD5A2 gene: implications for prostate cancer risk. Cancer Res 55: 3973–3975

    CAS  Google Scholar 

  22. Ross RK, Pike MC, Coetzee GA, Reichardt JKV, Yu MC, Feigelson H, Stanczyk FZ, Kolonel LN and Henderson BE (1998) Androgen metabolism and prostate cancer: establishing a model of genetic susceptibility. Cancer Res 58: 4497–4504

    CAS  Google Scholar 

  23. Smith JR, Freije D, Carpten JD, Grönberg H, Xu J, Isaacs SD, Brownstein MJ, Bova GS, Guo H, Bujnovszky P, Nusskern DR, Damberg J-E, Bergh A, Emanuelsson M, Kallioniemi O-P, Walker- Daniels J, Bailey-Wilson JE, Beaty TH, Meyers DA, Walsh PC, Collins FS, Trent JM and Isaacs WB (1996) A genome wide search reveals a major suceptibility locus for prostate cancer on chromosome 1. Science 274: 1371–1374

    CAS  Article  Google Scholar 

  24. Suarez BK, Lin J, Burmester JK, Broman KW, Weber JL, Banerjee TK, Goddard KA, Witte JS, Elston RC and Catalona WJ (2000) A genome screen of multiplex sibships with prostate cancer. Am J Hum Genet 66: 933–944

    CAS  Article  Google Scholar 

  25. Syvänen AC (1998) Solid-phase minisequencing as a tool to detect DNA polymorphism. Methods Mol Biol 98: 291–298

    PubMed  Google Scholar 

  26. Taylor JA, Hirvonen A, Watson M, Pittman G, Mohler JL and Douglas AB (1996) Association of prostate cancer with vitamin D receptor gene polymorphism. Cancer Res 56: 4108–4110

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu J, Meyers D, Freije D, Isaacs S, Wiley K, Nusskern D, Ewing C, Wilkens E, Bujnovszky P, Bova GS, Walsh P, Isaacs W, Schleutker J, Matikainen M, Tammela T, Visakorpi T, Kallioniemi O-P, Berry R, Schaid D, French A, McDonnell S, Schroeder J, Blute M, Thibodeau S, Grönberg H, Emanuelsson M, Damber J-E, Bergh A, Jonsson B-A, Smith J, Bailey-Wilson J, Carpten J, Stephan D, Gillanders E, Amundson I, Kainu T, Freas-Lutz D, Baffoe-Bonnie A, Van Aucken A, Sood R, Collins F, Brownstein M and Trent J (1998) Evidence for a prostate cancer susceptibility locus on the X chromosome. Nat Genet 20: 175–179

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and Permissions

About this article

Cite this article

Mononen, N., Ikonen, T., Syrjäkoski, K. et al. A missense substitution A49T in the steroid 5-alpha-reductase gene (SRD5A2) is not associated with prostate cancer in Finland. Br J Cancer 84, 1344–1347 (2001). https://doi.org/10.1054/bjoc.2001.1789

Download citation

Keywords

  • prostate cancer
  • 5-alpha-reductase
  • A49T
  • mutation

Further reading

Search

Quick links