Potentiation of the cytotoxicity of thymidylate synthase (TS) inhibitors by dipyridamole analogues with reduced α 1-acid glycoprotein binding

This article has been updated

Summary

Dipyridamole has been shown to enhance the in vitro activity of antimetabolite anticancer drugs through the inhibition of nucleoside transport. However, the clinical potential of dipyridamole has not been realized because of the avid binding of the drug to the plasma protein α1-acid glycoprotein (AGP). Dipyridamole analogues that retain potent nucleoside transport inhibitory activity in the presence of AGP are described and their ability to enhance the growth inhibitory and cytotoxic effects of thymidylate synthase (TS) inhibitors has been evaluated. Three dipyridamole analogues (NU3026, NU3059 and NU3060) were shown to enhance the growth inhibitory activity of the TS inhibitor CB3717 and block thymidine rescue in L1210 cells. The extent of potentiation at a fixed analogue concentration (10 μM) was related to the potency of inhibition of thymidine uptake. A further analogue, NU3076, was identified, which was more potent than dipyridamole with a K i value for inhibition of thymidine uptake of 0.1 μM compared to 0.28 μM for dipyridamole. In marked contrast to dipyridamole, inhibition of thymidine uptake by NU3076 was not significantly affected by the presence of AGP (5 mg ml–1). NU3076 and dipyridamole produced equivalent potentiation of the cytotoxicity of the non-classical antifolate TS inhibitor, nolatrexed, in L1210 cells with both compounds significantly reducing the LC90 by > threefold in the absence of salvageable thymidine. Thymidine rescue of L1210 cells from nolatrexed cytotoxicity was partially blocked by both 1 μM NU3076 and 1 μM dipyridamole. NU3076 also caused a significant potentiation of FU cytotoxicity in L1210 cells. These studies demonstrate that nucleoside transport inhibition can be maintained in the absence of AGP binding with the dipyridamole pharmacophore and that such analogues can enhance the cytotoxicity of TS inhibitors.

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  1. Belt, J. A. (1983). Heterogeneity of nucleoside transport in mammalian cells two types of transport activity in L1210 and other cultured neoplastic cells. Mol Pharmacol 24: 479–484.

    CAS  PubMed  Google Scholar 

  2. Budd, G. T., Jayaraj, A., Grabowski, D., Adelstein, D., Bauer, L., Boyett, J., Bukowski, R., Murthy, S. & Weick, J. (1990). Phase I trial of dipyridamole with 5-fluorouracil and folinic acid. Cancer Res 50: 7206–7211.

    CAS  PubMed  Google Scholar 

  3. Calvert, A. H., Alison, D. L., Harland, S. J., Jackman, A. L., Jones, T. R., Newell, D. R., Siddik, Z. H., Wiltshaw, E., McElwain, T. J., Smith, I. E. & Harrap, K. R. (1986). A phase I evaluation of the quinazoline antifolate thymidylate synthase inhibitor N10-propargyl-5,8-dideazafolic acid, CB3717. J Am Soc Clin Oncol 4: 1245–1252.

    CAS  Article  Google Scholar 

  4. Chen, T. R. (1977). In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp Cell Res 104: 255–262.

    CAS  Article  Google Scholar 

  5. Crawford, C. R., Ng, C. Y. C., Noel, D. & Belt, J. A. (1990). Nucleoside transport in L1210 murine leukemia cells. J Biol Chem 265: 9732–9736.

    CAS  PubMed  Google Scholar 

  6. Crawford, C. R., Patel, D. H., Naeve, C. & Belt, J. A. (1998). Cloning of the human equilibrative, nitrobenzylmercaptopurine riboside (NBMPR)-insensitive nucleoside transporter ei by functional expression in a transport-deficient cell line. J Biol Chem 273: 5288–5293.

    CAS  Article  Google Scholar 

  7. Curtin, N. J., Newell, D. R. & Harris, A. L. (1989). Modulation of dipyridamole action by α1-acid glycoprotein. Biochem Pharmacol 38: 3281–3288.

    CAS  Article  Google Scholar 

  8. Curtin, N. J., Harris, A. L. & Aherne, G. W. (1991). Mechanism of cell death following thymidylate synthase inhibition: 2′-deoxyuridine-5′-triphosphate accumulation, DNA damage and growth inhibition following exposure to CB3717 and dipyridamole. Cancer Res 51: 2346–2352.

    CAS  PubMed  Google Scholar 

  9. Fox, M., Boyle, J. M., Kinsella, A. R. (1991). Nucleoside salvage and resistance to antimetabolite anticancer agents. Br J Cancer 64: 428–436.

    CAS  Article  Google Scholar 

  10. Goel, R. & Howell, S. B. (1992). Modulation of the activity of cancer chemotherapeutic agents by dipyridamole. In New Drugs, Concepts and Results in Cancer Chemotherapy, Muggia FM (ed), pp. 19–44. Kluwer: Amsterdam

    Google Scholar 

  11. Grem, J. L. & Fischer, P. H. (1985). Augmentation of 5-fluorouracil cytotoxicity in human colon cancer cells by dipyridamole. Cancer Res 45: 2967–2972.

    CAS  PubMed  Google Scholar 

  12. Grem, J. L. & Fischer, P. H. (1989). Enhancement of 5-fluorouracil anticancer activity by dipyridamole. Pharmacol Ther 40: 349–379.

    CAS  Article  Google Scholar 

  13. Griffiths, M., Beaumont, N., Yao, S. Y. M., Sundaram, M., Boumah, C. E., Davies, A., Kwong, F. Y. P., Coe, I., Cass, C. E., Young, J. D. & Baldwin, S. A. (1997). Cloning of a human nucleoside transporter implicated in the cellular uptake of adenosine and chemotherapeutic drugs. Nat Med 3: 89–93.

    CAS  Article  Google Scholar 

  14. Hammond, J. R. (1991). Comparative pharmacology of the nitrobenzylthioguanosine-sensitive and -resistant nucleoside transport mechanisms of Ehrlich ascites tumour cells. J Pharmacol Exp Ther 259: 799–807.

    CAS  PubMed  Google Scholar 

  15. Jackman, A. L., Taylor, G. A., Calvert, A. H. & Harrap, K. R. (1984). Modulation of antimetabolite effects: effects of thymidine on the efficacy of quinazoline-based thymidylate synthetase inhibitor CB3717. Biochem Pharmacol 33: 3269–3275.

    CAS  Article  Google Scholar 

  16. Jarvis, S. M. (1986). Nitrobenzylthioinosine-sensitive nucleoside transport system: mechanism of inhibition by dipyridamole. Mol Pharmacol 30: 659–665.

    CAS  PubMed  Google Scholar 

  17. Jones, T. R., Calvert, A. H., Jackman, A. L., Brown, S. J., Jones, M. & Harrap, K. R. (1981). A potent antitumour quinazoline inhibitor of thymidylate synthetase: synthesis, biological properties and therapeutic results in mice. Eur J Cancer 17: 11–19.

    CAS  Article  Google Scholar 

  18. Kinsella, A. R. & Harran, M. S. (1991). Decreasing sensitivity to cytotoxic agents parallels increasing tumorigenicity in human fibroblasts. Cancer Res 51: 1855–1859.

    CAS  PubMed  Google Scholar 

  19. Köhne-Wömpner, C-H, Schmoll, H. J., Wilke, H., Schöber, C., Bodenstein, H., Gropp, C., Hiddermann, W., Kunth, A., Schmitz-Hübner, U. & Weiß, J. (1989). Comparative activity of 5-FU/high dose folinic acid ± dipyridamole – a randomised multi center phase II trial in advanced colorectal cancer. Proc Eur Conf Clin Oncol 5: 703

    Google Scholar 

  20. Kremer, J. M. H., Wilting, J. & Janssen, L. H. M. (1988). Drug binding to human alpha-1-acid glycoprotein in health and disease. Pharmacol Rev 40: 1–47.

    CAS  PubMed  Google Scholar 

  21. Lonn, U., Lonn, S., Nylen, U. & Winblad, G. (1989). 5-Fluoropyrimidine-induced DNA damage in human colon adenocarcinoma and its augmentation by the nucleoside transport inhibitor dipyridamole. Cancer Res 49: 1085–1089.

    CAS  PubMed  Google Scholar 

  22. Mahony, C., Wolfram, K. M., Coccetto, D. M. & Bjornsson, T. D. (1982). Dipyridamole kinetics. Clin Pharm Ther 31: 330–338.

    CAS  Article  Google Scholar 

  23. Plagemann, P. G. W. & Wohlhueter, R. M. (1984). Nucleoside transport in cultured mammalian cells. Multiple forms with different sensitivity to inhibition by nitrobenzylthioinosine or hypoxanthine. Biochim Biophys Acta 773: 39–52.

    CAS  Article  Google Scholar 

  24. Rustum, Y. M., Harstrick, A., Cao, S., Vanhoefer, U., Yin, M-B, Wilke, H. & Seeber, S. (1997). Thymidylate synthase inhibitors in cancer therapy: direct and indirect inhibitors. J Clin Oncol 15: 389–400.

    CAS  Article  Google Scholar 

  25. Plagemann, P. G. W., Wohlhueter, R. M. & Woffendin, C. (1988). Nucleoside and nucleobase transport in animal cells. Biochim Biophys Acta 947: 405–443.

    CAS  Article  Google Scholar 

  26. Schilsky, R. L. (1992). Antimetabolities. In The Chemotherapy Source Book. Perry MC (ed), pp 301–317. Williams and Wilkins: Baltimore

    Google Scholar 

  27. Schmoll, H-J, Harstrick, A., Köhne-Wömpner, C-H, Schöber, C., Wilke, H. & Poliwoda, H. (1990). Modulation of cytotoxic drug activity by dipyridamole. Cancer Treat Rev 17: 57–65.

    CAS  Article  Google Scholar 

  28. Wadler, S., Subar, M., Green, M. D., Wiernik, P. H. & Muggia, F. M. (1987). Phase II trial of oral methotrexate and dipyridamole in colorectal carcinoma. Cancer Treat Rep 71: 821–824.

    CAS  PubMed  Google Scholar 

  29. Webber, S., Bartlett, C. A., Boritzki, T. J., Hillard, J. A., Howland, E. F., Johnston, A. L., Kosa, M., Margosiak, S. A., Morse, C. A. & Shetty, B. V. (1996). AG337, a novel lipophilic thymidylate synthase inhibitor: in vitro and in vivo preclinical studies. Cancer Chemother Pharmacol 37: 509–517.

    CAS  Article  Google Scholar 

  30. Weber, G. (1983). Biochemical strategy of cancer cells and the design of chemotherapy: GHA Clowes Memorial Lecture. Cancer Res 43: 3466–3492.

    CAS  PubMed  Google Scholar 

  31. Willson, J. K. V., Fischer, P. H., Tutsch, K., Albarti, D., Simnom, K., Hamilton, R. D., Bruggink, J., Koeller, J. M., Tormey, D. C., Earhart, R. H., Rachosky, A. & Trump, D. L. (1988). Phase I clinical trial of a combination of dipyridamole and acivicin based upon inhibition of nucleoside salvage. Cancer Res 48: 5585–5590.

    CAS  PubMed  Google Scholar 

  32. Woffendin, C. & Plagemann, P. G. W. (1987). Interaction of [3H]dipyridamole with the nucleoside transporters of human erythrocytes and cultured animal cells. J Membrance Biol 98: 189–100.

    Google Scholar 

  33. Wohlhueter, R. M., Marz, R., Graff, J. C. & Plagemann, P. G. W. (1978). A rapid-mixing technique to measure transport in suspended animal cells: applications to nucleoside transport in Novikoff rat hepatoma cells. Methods Cell Biol 20: 211–236.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and Permissions

About this article

Cite this article

Curtin, N., Bowman, K., Turner, R. et al. Potentiation of the cytotoxicity of thymidylate synthase (TS) inhibitors by dipyridamole analogues with reduced α 1-acid glycoprotein binding. Br J Cancer 80, 1738–1746 (1999). https://doi.org/10.1038/sj.bjc.6690591

Download citation

Keywords

  • nucleoside transport inhibition
  • dipyridamole analogues
  • α1-acid glycoprotein
  • thymidine rescue
  • nolatrexed cytotoxicity
  • 5-fluorouracil cytotoxicity

Further reading

Search

Quick links