Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gene expression analysis in a murine model of allergic asthma reveals overlapping disease and therapy dependent pathways in the lung

Abstract

Accumulating evidence in animal models and human asthma support a central role for IL-13 signaling in disease pathogenesis. In order to identify asthma and therapy associated genes, global transcriptional changes were monitored in mouse lung following antigen challenge (ovalbumin (OVA)), either alone or in the presence of a soluble IL-13 antagonist. Changes in whole lung gene expression after instillation of mIL-13 were also measured both in wild type and STAT6 deficient mice. A striking overlap in the gene expression profiles induced by either OVA challenge or mIL-13 was observed, further strengthening the relationship of IL-13 signaling to asthma. Consistent with results from functional studies, a subset of the OVA-induced gene expression was significantly inhibited by a soluble IL-13 antagonist while IL-13-modulated gene expression was completely attenuated in the absence of STAT6-mediated signaling. Results from these experiments greatly expand our understanding of asthma and provide novel molecular targets for therapy and potential biomarkers of IL-13 antagonism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Lange P, Parner J, Vestbo J, Schnohr P, Jensen G . A 15-year follow-up study of ventilatory function in adults with asthma. N Engl J Med 1998; 339: 1194–1200.

    Article  CAS  Google Scholar 

  2. Elias JA, Zhu Z, Chupp G, Homer RJ . Airway remodeling in asthma. J Clin Invest 1999; 104: 1001–1006.

    Article  CAS  Google Scholar 

  3. Mannino DM, Homa DM, Pertowski CA, Ashizawa A, Nixon LL, Johnson CA et al. Surveillance for asthma – United States, 1960–1995. MMWR CDC Surveill Summ 1998; 47: 1–27.

    CAS  PubMed  Google Scholar 

  4. Gavett SH, Chen X, Finkelman F, Wills-Karp M . Depletion of murine CD4+ T lymphocytes prevents antigen-induced airway deactivity and pulmonary eosinophilia. Am J Respir Cell Mol Biol 1994; 10: 587–593.

    Article  CAS  Google Scholar 

  5. Wills-Karp M . Immunologic basis of antigen-induced airway hyperresponsiveness. Annu Rev Immunol 1999; 17: 255–281.

    Article  CAS  Google Scholar 

  6. Kuperman D, Schofield B, Wills-Karp M, Grusby MJ . Signal transducer and activator of transcription factor 6 (Stat6)-deficient mice are protected from antigen-induced airway hyperresponsiveness and mucus production. J Exp Med 1998; 187: 939–948.

    Article  CAS  Google Scholar 

  7. Gavett SH, O'Hearn DJ, Karp CL, Patel EA, Schofield BH, Finkelman FD et al. Interleukin-4 receptor blockade prevents airway responses induced by antigen challenge in mice. Am J Physiol 1997; 272 (Part 1): L253–L261.

    CAS  PubMed  Google Scholar 

  8. Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL et al. Interleukin-13: central mediator of allergic asthma. Science 1998; 282: 2258–2261.

    Article  CAS  Google Scholar 

  9. Grunig G, Warnock M, Wakil AE, Venkayya R, Brombacher F, Rennick DM et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science 1998; 282: 2261–2263.

    Article  CAS  Google Scholar 

  10. Wills-Karp M . IL-12/IL-13 axis in allergic asthma. J Allergy Clin Immunol 2001; 107: 9–18.

    Article  CAS  Google Scholar 

  11. Wills-Karp M . The gene encoding interleukin-13: a susceptibility locus for asthma and related traits. Respir Res 2000; 1: 19–23.

    Article  CAS  Google Scholar 

  12. Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 1996; 14: 1675–1680.

    Article  CAS  Google Scholar 

  13. Liu Z, Kim J, Sypek JP, Wang IM, Horton H, Oppenheim FG et al. Gene expression profiles in human nasal polyp tissues studied by means of DNA microarray. J Allergy Clin Immunol 2004; 114: 783–790.

    Article  CAS  Google Scholar 

  14. Reiner AD, Yekutieli D, Benjamini Y . Identifying differentially expressed genes using false discovery rate controlling procedures. BioInformatics 2003; 19: 368–375.

    Article  CAS  Google Scholar 

  15. Akimoto T, Numata F, Tamura M, Takata Y, Higashida N, Takashi T et al. Abrogation of bronchial eosinophilic inflammation and airway hyperreactivity in signal transducers and activators of transcription (STAT)6-deficient mice. J Exp Med 1998; 187: 1537–1542.

    Article  CAS  Google Scholar 

  16. Morse B, Sypek JP, Donaldson DD, Haley KJ, Lilly CM . Effects of IL-13 on airway responses in the guinea pig. Am J Physiol Lung Cell Mol Physiol 2002; 282: L44–L49.

    Article  CAS  Google Scholar 

  17. Aikawa T, Shimura S, Sasaki H, Ebina M, Takishima T . Marked goblet cell hyperplasia with mucus accumulation in the airways of patients who died of severe acute asthma attack. Chest 1992; 101: 916–921.

    Article  CAS  Google Scholar 

  18. Nikolaidis NM, Zimmermann N, King NE, Mishra A, Pope SM, Finkelman FD et al. Trefoil factor-2 is an allergen-induced gene regulated by Th2 cytokines and STAT6 in the lung. Am J Respir Cell Mol Biol 2003; 29: 458–464.

    Article  CAS  Google Scholar 

  19. Kamada F, Suzuki Y, Shao C, Tamari M, Hasegawa K, Hirota T et al. Association of the hCLCA1 gene with childhood and adult asthma. Genes Immun 2004; 5: 540–547.

    Article  CAS  Google Scholar 

  20. Beltowski J . Guanylin and related peptides. J Physiol Pharmacol 2001; 52: 351–375.

    CAS  PubMed  Google Scholar 

  21. Zhang ZH, Jow F, Numann R, Hinson J . The airway-epithelium: a novel site of action by guanylin. Biochem Biophys Res Commun 1998; 244: 50–56.

    Article  CAS  Google Scholar 

  22. Zimmermann N, Mishra A, King NE, Fulkerson PC, Doepker MP, Nikolaidis NM et al. Transcript signatures in experimental asthma: identification of STAT6-dependent and -independent pathways. J Immunol 2004; 172: 1815–1824.

    Article  CAS  Google Scholar 

  23. Longman RJ, Douthwaite J, Sylvester PA, Poulsom R, Corfield AP, Thomas MG et al. Coordinated localisation of mucins and trefoil peptides in the ulcer associated cell lineage and the gastrointestinal mucosa. Gut 2000; 47: 792–800.

    Article  CAS  Google Scholar 

  24. Lee SH, Oh BH, Lee HM, Choi JO, Jung KY . Expression of mRNA of trefoil factor peptides in human nasal mucosa. Acta Otolaryngol 2001; 121: 849–853.

    Article  CAS  Google Scholar 

  25. Bautsch W, Hoymann HG, Zhang Q, Meier-Wiedenbach I, Raschke U, Ames RS et al. Cutting edge: guinea pigs with a natural C3a-receptor defect exhibit decreased bronchoconstriction in allergic airway disease: evidence for an involvement of the C3a anaphylatoxin in the pathogenesis of asthma. J Immunol 2000; 165: 5401–5405.

    Article  CAS  Google Scholar 

  26. Humbles AA, Lu B, Nilsson CA, Lilly C, Israel E, Fujiwara Y et al. A role for the C3a anaphylatoxin receptor in the effector phase of asthma. Nature 2000; 406: 998–1001.

    Article  CAS  Google Scholar 

  27. Drouin SM, Corry DB, Kildsgaard J, Wetsel RA . Cutting edge: the absence of C3 demonstrates a role for complement in Th2 effector functions in a murine model of pulmonary allergy. J Immunol 2001; 167: 4141–4145.

    Article  CAS  Google Scholar 

  28. Polack FP, Teng MN, Collins PL, Prince GA, Exner M, Regele H et al. A role for immune complexes in enhanced respiratory syncytial virus disease. J Exp Med 2002; 196: 859–865.

    Article  CAS  Google Scholar 

  29. Hawlisch H, Wills-Karp M, Karp CL, Kohl J . The anaphylatoxins bridge innate and adaptive immune responses in allergic asthma. Mol Immunol 2004; 41: 123–131.

    Article  CAS  Google Scholar 

  30. abazza EC, Taguchi O, Tamaki S, Takeya H, Kobayashi H, Yasui H et al. Thrombin in the airways of asthmatic patients. Lung 1999; 177: 253–262.

    Article  Google Scholar 

  31. Walter DM, McIntire JJ, Berry G, McKenzie AN, Donaldson DD, DeKruyff RH et al. Critical role for IL-13 in the development of allergen-induced airway hyperreactivity. J Immunol 2001; 167: 4668–4675.

    Article  CAS  Google Scholar 

  32. Donaldson DD, Elias JA, Wills-Karp M . Interleukin-13 Anatagonism. In: Hansel TT, Barnes PJ (eds). New Drugs for Asthma, Allergy, COPD. Karger: Farmington, CT, 2001, pp 260–264.

    Chapter  Google Scholar 

  33. Wynn TA . IL-13 effector functions. Annu Rev Immunol 2003; 21: 425–456.

    Article  CAS  Google Scholar 

  34. Kaplan MH, Whitfield JR, Boros DL, Grusby MJ . Th2 cells are required for the Schistosoma mansoni egg-induced granulomatous response. J Immunol 1998; 160: 1850–1856.

    CAS  Google Scholar 

  35. Donaldson DD, Whitters MJ, Fitz LJ, Neben TY, Finnerty H, Henderson SL et al. The murine IL-13 receptor alpha 2: molecular cloning, characterization, and comparison with murine IL-13 receptor alpha 1. J Immunol 1998; 161: 2317–2324.

    CAS  Google Scholar 

  36. Urban Jr JF, Noben-Trauth N, Donaldson DD, Madden KB, Morris SC, Collins M et al. IL-13, IL-4Ralpha, and Stat6 are required for the expulsion of the gastrointestinal nematode parasite Nippostrongylus brasiliensis. Immunity 1998; 8: 255–264.

    Article  CAS  Google Scholar 

  37. Byrne MC, Whitley MZ, Follettie MT . Preparation of mRNA for expression monitoring. In: Ausubel et al. (eds). Current Protocols in Molecular Biology. John Wiley and Sons, Inc.: New York, 2000.

    Google Scholar 

  38. Hill AA, Brown EL, Whitley MZ, Tucker-Kellogg G, Hunter CP, Slonim DK . Evaluation of normalization procedures for oligonucleotide array data based on spiked cRNA controls. Genome Biol 2001; 2: RESEARCH0055.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Sandy Goldman and our colleagues in Molecular Profiling and Biomarker Discovery and Respiratory Disease for support during the course of this work. We are grateful to Maryann Whitley, William Mounts and the Wyeth Bioinformatics Department for continuing support in data analysis and software development. This work was supported by grants to Marsha Wills-Karp including HL58527, Uo1HL66623, HL10342 from the National Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M T Follettie.

Additional information

Duality of interest

Wyeth Research has commercial interest in the therapeutic application of Il-13 antagonism.

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website (http://www.nature.com/tpj).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Follettie, M., Ellis, D., Donaldson, D. et al. Gene expression analysis in a murine model of allergic asthma reveals overlapping disease and therapy dependent pathways in the lung. Pharmacogenomics J 6, 141–152 (2006). https://doi.org/10.1038/sj.tpj.6500357

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500357

Keywords

This article is cited by

Search

Quick links