Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Implications
  • Published:

Clinical Implication

Availability of pharmacogenomics-based prescribing information in drug package inserts for currently approved drugs

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Evans WE, Relling MV . Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999; 286: 487–491.

    Article  CAS  Google Scholar 

  2. Johnson JA . Pharmacogenetics: potential for individualized drug therapy through genetics. Trends Genet 2003; 19: 660–666.

    Article  CAS  Google Scholar 

  3. Aquilante CL, Lobmeyer MT, Langaee TY, Johnson JA . Comparison of cytochrome P450 2C9 genotyping methods and implications for the clinical laboratory. Pharmacotherapy 2004; 24: 720–726.

    Article  CAS  Google Scholar 

  4. Chen Z, Weck KE . Hepatitis C virus genotyping: interrogation of the 5′ untranslated region cannot accurately distinguish genotypes 1a and 1b. J Clin Microbiol 2002; 40: 3127–3134.

    Article  CAS  Google Scholar 

  5. Corbet S, Bukh J, Heinsen A, Fomsgaard A . Hepatitis C virus subtyping by a core-envelope 1-based reverse transcriptase PCR assay with sequencing and its use in determining subtype distribution among Danish patients. J Clin Microbiol 2003; 41: 1091–1100.

    Article  CAS  Google Scholar 

  6. Liew M, Erali M, Page S, Hillyard D, Wittwer C . Hepatitis C genotyping by denaturing high-performance liquid chromatography. J Clin Microbiol 2004; 42: 158–163.

    Article  CAS  Google Scholar 

  7. Vera-Roman JM, Rubio-Martinez LA . Comparative assays for the HER-2/neu oncogene status in breast cancer. Arch Pathol Lab Med 2004; 128: 627–633.

    CAS  PubMed  Google Scholar 

  8. Varshney D, Zhou YY, Geller SA, Alsabeh R . Determination of HER-2 status and chromosome 17 polysomy in breast carcinomas comparing HercepTest and PathVysion FISH assay. Am J Clin Pathol 2004; 121: 70–77.

    Article  CAS  Google Scholar 

  9. Borlak J, Hermann R, Erb K, Thum T . A rapid and simple CYP2D6 genotyping assay—case study with the analgetic tramadol. Metabolism 2003; 52: 1439–1443.

    Article  CAS  Google Scholar 

  10. Gaedigk A, Ryder DL, Bradford LD, Leeder JS . CYP2D6 poor metabolizer status can be ruled out by a single genotyping assay for the −1584G promoter polymorphism. Clin Chem 2003; 49: 1008–1011.

    Article  CAS  Google Scholar 

  11. Scordo MG, Pengo V, Spina E, Dahl ML, Gusella M, Padrini R . Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther 2002; 72: 702–710.

    Article  CAS  Google Scholar 

  12. Meyer P, Braun A, Roscher AA . Analysis of the two common alpha-1-antitrypsin deficiency alleles PiMS and PiMZ as modifiers of Pseudomonas aeruginosa susceptibility in cystic fibrosis. Clin Genet 2002; 62: 325–327.

    Article  CAS  Google Scholar 

  13. Varghese L, Janckila A, Yam LT . Acute promyelocytic leukemia. New methods in diagnosis and treatment. J Ky Med Assoc 1999; 97: 61–65.

    CAS  PubMed  Google Scholar 

  14. Paietta E, Goloubeva O, Neuberg D, Bennett JM, Gallagher R, Racevskis J et al. A surrogate marker profile for PML/RAR alpha expressing acute promyelocytic leukemia and the association of immunophenotypic markers with morphologic and molecular subtypes. Cytometry 2004; 59B: 1–9.

    Article  CAS  Google Scholar 

  15. Dally H, Bartsch H, Jager B, Edler L, Schmezer P, Spiegelhalder B et al. Genotype relationships in the CYP3A locus in Caucasians. Cancer Lett 2004; 207: 95–99.

    Article  CAS  Google Scholar 

  16. Tsukino H, Kuroda Y, Nakao H, Imai H, Inatomi H, Osada Y et al. Cytochrome P450 (CYP) 1A2, sulfotransferase (SULT) 1A1, and N-acetyltransferase (NAT) 2 polymorphisms and susceptibility to urothelial cancer. J Cancer Res Clin Oncol 2004; 130: 99–106.

    Article  CAS  Google Scholar 

  17. Nakajima M, Yokoi T, Mizutani M, Kinoshita M, Funayama M, Kamataki T . Genetic polymorphism in the 5′-flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans. J Biochem (Tokyo) 1999; 125: 803–808.

    Article  CAS  Google Scholar 

  18. Monaghan KG, Wiktor A, Van Dyke DL . Diagnostic testing for Prader–Willi syndrome and Angelman syndrome: a cost comparison. Genet Med 2002; 4: 448–450.

    Article  Google Scholar 

  19. Berg MA, Argente J, Chernausek S, Gracia R, Guevara-Aguirre J, Hopp M et al. Diverse growth hormone receptor gene mutations in Laron syndrome. Am J Hum Genet 1993; 52: 998–1005.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Perez Jurado LA, Argente J, Barrios V, Pozo J, Munoz MT, Hernandez M et al. Molecular diagnosis and endocrine evaluation of a patient with a homozygous 7.0 kb deletion of the growth hormone (GH) gene cluster: response to biosynthetic GH therapy. J Pediatr Endocrinol Metab 1997; 10: 185–190.

    CAS  PubMed  Google Scholar 

  21. Gyato K, Wray J, Huang ZJ, Yudkoff M, Batshaw ML . Metabolic and neuropsychological phenotype in women heterozygous for ornithine transcarbamylase deficiency. Ann Neurol 2004; 55: 80–86.

    Article  Google Scholar 

  22. Thorland EC, Drost JB, Lusher JM, Warrier I, Shapiro A, Koerper MA et al. Anaphylactic response to factor IX replacement therapy in haemophilia B patients: complete gene deletions confer the highest risk. Haemophilia 1999; 5: 101–105.

    Article  CAS  Google Scholar 

  23. Warrier I, Ewenstein BM, Koerper MA, Shapiro A, Key N, DiMichele D et al. Factor IX inhibitors and anaphylaxis in hemophilia B. J Pediatr Hematol Oncol 1997; 19: 23–27.

    Article  CAS  Google Scholar 

  24. Evans WE, McLeod HL . Pharmacogenomics—drug disposition, drug targets, and side effects. N Engl J Med 2003; 348: 538–549.

    Article  CAS  Google Scholar 

  25. Evans WE, Johnson JA . Pharmacogenomics: the inherited basis for interindividual differences in drug response. Annu Rev Genomics Hum Genet 2001; 2: 9–39.

    Article  CAS  Google Scholar 

  26. Salerno RA, Lesko LJ . Pharmacogenomics in drug development and regulatory decision-making: the genomic data submission (GDS) proposal. Pharmacogenomics 2004; 5: 25–30.

    Article  Google Scholar 

  27. Weinshilboum R . Inheritance and drug response. N Engl J Med 2003; 348: 529–537.

    Article  Google Scholar 

  28. McLeod HL, Siva C . The thiopurine S-methyltransferase gene locus—implications for clinical pharmacogenomics. Pharmacogenomics 2002; 3: 89–98.

    Article  CAS  Google Scholar 

  29. Krynetski EY, Evans WE . Pharmacogenetics of cancer therapy: getting personal. Am J Hum Genet 1998; 63: 11–16.

    Article  CAS  Google Scholar 

  30. Marra CA, Esdaile JM, Anis AH . Practical pharmacogenetics: the cost effectiveness of screening for thiopurine S-methyltransferase polymorphisms in patients with rheumatological conditions treated with azathioprine. J Rheumatol 2002; 29: 2507–2512.

    Google Scholar 

  31. US Food and Drug Administration. Summary Minutes of the Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee (July 15, 2003) 2003. http://www.fda.gov/ohrms/dockets/ac/03/minutes/3971M1.pdf.

  32. Aithal GP, Day CP, Kesteven PJ, Daly AK . Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 1999; 353: 717–719.

    Article  CAS  Google Scholar 

  33. Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL, Farin FM et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 2002; 287: 1690–1698.

    Article  CAS  Google Scholar 

  34. Shikata E, Ieiri I, Ishiguro S, Aono H, Inoue K, Koide T et al. Association of pharmacokinetic (CYP2C9) and pharmacodynamic (factors II, VII, IX, and X; proteins S and C; and gamma-glutamyl carboxylase) gene variants with warfarin sensitivity. Blood 2004; 103: 2630–2635.

    Article  CAS  Google Scholar 

  35. Peyvandi F, Spreafico M, Siboni SM, Moia M, Mannucci PM . CYP2C9 genotypes and dose requirements during the induction phase of oral anticoagulant therapy. Clin Pharmacol Ther 2004; 75: 198–203.

    Article  CAS  Google Scholar 

  36. Takahashi H, Wilkinson GR, Padrini R, Echizen H . CYP2C9 and oral anticoagulation therapy with acenocoumarol and warfarin: similarities yet differences. Clin Pharmacol Ther 2004; 75: 376–380.

    Article  CAS  Google Scholar 

  37. Schmitz G, Aslanidis C, Lackner KJ . Pharmacogenomics: implications for laboratory medicine. Clin Chim Acta 2001; 308: 43–53.

    Article  CAS  Google Scholar 

  38. Logue LJ . Genetic testing coverage and reimbursement: a provider's dilemma. Clin Leadersh Manag Rev 2003; 17: 346–350.

    PubMed  Google Scholar 

  39. Schwartz MK . Genetic testing and the clinical laboratory improvement amendments of 1988: present and future. Clin Chem 1999; 45: 739–745.

    CAS  PubMed  Google Scholar 

  40. US Food and Drug Administration. Guidance for Industry: Pharmacogenomic Data Submissions 2003. http://www.fda.gov/cber/gdlns/pharmdtasub.pdf.

  41. Veenstra DL, Higashi MK, Phillips KA . Assessing the cost-effectiveness of pharmacogenomics. AAPS PharmSci 2000; 2: E29.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Steven Terra and Dr Julie Johnson for their thoughtful comments regarding the manuscript. While Dr Beasley is an employee of the US Food and Drug Administration, the views expressed in this paper do not reflect the official policy of the FDA. No official endorsement by the FDA is intended or should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Zineh.

Additional information

DUALITY OF INTEREST

There are no conflicts of interest for any of the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zineh, I., Gerhard, T., Aquilante, C. et al. Availability of pharmacogenomics-based prescribing information in drug package inserts for currently approved drugs. Pharmacogenomics J 4, 354–358 (2004). https://doi.org/10.1038/sj.tpj.6500284

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500284

This article is cited by

Search

Quick links