Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Site-specific molecular design and its relevance to pharmacogenomics and chemical biology

Abstract

The emergence of the new discipline of pharmacogenomics reflects the growing convergence of chemical and genomic space. The massive information-driven growth in both computational chemistry and structural biology is leading to unprecedented opportunities in both chemical and biological design. In this paper we relate current opinion in structural biology to recent developments in computational drug design. Sequence information now permits protein structure prediction and, together with experimental protein structure determination, a complete database of ligand-binding sites and protein–protein interactions can be assembled. When aligned with site exploration and virtual screening, this information provides a foundation for structure-based pharmacogenomics. In association with chemical genomics, structure-based design will allow major new insights into a compound’s biological and pharmaceutical properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Gerlach JH et al . The sequence of the human genome Science 2001 291: 1304–1351

    Article  CAS  PubMed  Google Scholar 

  2. Blake JF . Chemoinformatics—predicting the physicochemical properties of ‘drug-like’ molecules Curr Opin Biotechnol 2000 1: 104–107

    Article  Google Scholar 

  3. Bailey DS, Bondar A, Furness ML . Pharmacogenomics—it’s not just pharmacogenetics Curr Opin Biotech 1998 9: 595–601

    Article  CAS  PubMed  Google Scholar 

  4. Stockwell BR . Chemical genetics: ligand-based discovery of gene function Nature Rev 2000 1: 116–125

    Article  CAS  Google Scholar 

  5. International Human Genome Sequencing Consortium . Initial sequencing and analysis of the human genome Nature 2001 409: 860–921

    Article  Google Scholar 

  6. Nature Structural Biology 2000 7: (Suppl) 927–994

  7. Drews J . Drug discovery: a historical perspective Science 2000 287: 1960–1964

    Article  CAS  PubMed  Google Scholar 

  8. Bottomley S . Value-added databases Drug Discovery Today 1999 4: 42–44

    Article  CAS  PubMed  Google Scholar 

  9. Baxevanis AD . The Molecular Biology Database Collection: an updated compilation of biological database resources Nucleic Acids Res 2001 29: 1–10, and following articles

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cagney G, Uetz P, Fields S . High-throughput screening for protein–protein interactions using two-hybrid assay Meth Enzymol 2000 328: 3–14

    Article  CAS  Google Scholar 

  11. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Gerlach JH et al . A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae Nature 2000 403: 623–627

    Article  CAS  PubMed  Google Scholar 

  12. Rain J-C, Selig L, De Reuse H, Battaglia V, Reverdy C, Gerlach JH et al . The protein–protein interaction map of Helicobacter pylori Nature 2001 409: 211–215

    Article  CAS  PubMed  Google Scholar 

  13. Newman JR, Wolf E, Kim PS . A computationally directed screen identifying interacting coiled coils from Saccharomyces cerevisiae Proc Natl Acad Sci USA 2000 97: 13203–13208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pandey A, Mann M . Proteomics to study genes and genomes Nature 2000 405: 837–846

    Article  CAS  PubMed  Google Scholar 

  15. Pandey A, Podtelejnikov AV, Blagoev B, Bustelo XR, Mann M, Lodish HF . Analysis of receptor signalling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors Proc Natl Acad Sci USA 2000 97: 179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bader GD, Donaldson I, Wolting C, Ouellette BF, Pawson T, Hogue CW . BIND—the biomolecular interaction network database Nucleic Acids Res 2001 29: 242–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Gerlach JH et al . Crystal structure of rhodopsin: a G protein-coupled receptor Science 2000 289: 739–745

    Article  CAS  PubMed  Google Scholar 

  18. Wright PE, Dyson HJ . Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm J Mol Biol 1999 293: 321–331

    Article  CAS  PubMed  Google Scholar 

  19. Shoemaker BA, Portman JJ, Wolynes PG . Speeding molecular recognition by using the folding funnel: the fly-casting mechanism Proc Natl Acad Sci USA 2000 97: 8868–8873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sanchez R, Sali A . Large-scale protein structure modeling of the Saccharomyces cerevisiae genome Proc Natl Acad Sci USA 1998 95: 13597–13602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sanchez R, Pieper U, Melo F, Eswar N, Marti-Renom MA, Gerlach JH et al . Protein structure modeling for structural genomics Nat Struct Biol 2000 7 (Suppl): 986–990

    Article  Google Scholar 

  22. Gouldson PR, Higgs C, Smith RE, Dean MK, Gkoutos GV, Reynolds CA . Dimerization and domain swapping in G-protein-coupled receptors, a computational study Neuropsychopharmacology 2000 23 (Suppl): 60–77

    Article  Google Scholar 

  23. Sternberg MJ, Bates PA, Kelley LA, MacCallum RM . Progress in protein structure prediction: assessment of CASP3 Curr Opin Struct Biol 1999 9: 368–373

    Article  CAS  PubMed  Google Scholar 

  24. Thornton JM, Todd AE, Milburn D, Borkakoti N, Orengo CA . From structure to function: approaches and limitations Nat Struct Biol 2000 7 (Suppl): 991–994

    Article  Google Scholar 

  25. Appelt K . Crystal structures of HIV-1 protease-inhibitor complexes Perspect Drug Discov Design 1993 1: 23–48

    Article  CAS  Google Scholar 

  26. Hendlich M . Databases for protein-ligand complexes Acta Crystallogr D Biol Crystallogr 1998 54: 1178–1182

    Article  CAS  PubMed  Google Scholar 

  27. Hofmann K, Bucher P, Falquet L, Bairoch A . The PROSITE database, its status in 1999 Nucleic Acids Res 1999 27: 215–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Danziger DJ, Dean PM . Automated site-directed drug design: the prediction and observation of ligand point positions at hydrogen-bonding regions on protein surfaces Proc R Soc Lond B 1989 236: 115–124

    Article  CAS  PubMed  Google Scholar 

  29. MacBeath G, Schreiber SL . Printing proteins as microarrays for high-throughput function determination Science 2000 289: 1760–1763

    CAS  PubMed  Google Scholar 

  30. Zhang YP, Lewis RN, Hodges RS, McElhaney RN . Peptide models of the helical hydrophobic transmembrane segments of membrane proteins: interactions of acetyl-K(2)-(LA)(12)-K(2)-amide with phosphatidylethanolamine bilayer membranes Biochemistry 2001 40: 474–482

    Article  CAS  PubMed  Google Scholar 

  31. Pantoliano MW, Rhind AW, Salemme FR . Microplate thermal shift assay for ligand development and multivariable protein chemistry optimization US Patent 1997; 6 020 141.

  32. Weinberger SR, Morris TS, Pawlak M . Recent trends in protein biochip technology Pharmacogenomics 2000 1: 395–416

    Article  CAS  PubMed  Google Scholar 

  33. Cancilla MT, Leavell MD, Chow J, Leary JA . Mass spectrometry and immobilized enzymes for the screening of inhibitor libraries Proc Natl Acad Sci USA 2000 97: 12008–12013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schriemer C, Bundle DR, Li L, Hindsgaul O . Micro-scale frontal affinity chromatography with mass spectrometric detection: a new method for the screening of compound libraries Agnew Chem Int Ed 1998 37: 3383–3387

    Article  CAS  Google Scholar 

  35. Danziger DJ, Dean M . Automated site-directed drug design: a general algorithm for knowledge acquisition about hydrogen-bonding regions at protein surfaces Proc R Soc Lond B 1989 236: 101–113

    Article  CAS  PubMed  Google Scholar 

  36. Dean PM . Defining and using molecular similarity or complementarity for drug design. In: Dean PM (ed) Molecular Similarity in Drug Design Blackie Academic and Professional: Glasgow 1995 pp 1–23

    Chapter  Google Scholar 

  37. Bailey D, Brown D . High-throughput chemistry and structure-based design: survival of the smartest Drug Discovery Today 2001 6: 57–59

    Article  CAS  PubMed  Google Scholar 

  38. Klebe G (ed) . Virtual Screening: an Alternative or Complement to High Throughput Screening? Kluwer/ESCOM: Deventer 2000

    Google Scholar 

  39. Matthews DA, Dragovich PS, Webber SE, Fuhrman SA, Patick AK, Gerlach JH et al . Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes Proc Natl Acad Sci USA 1999 96: 11000–11007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee D, Long SA, Adams JL, Chan G, Vaidya KS, Gerlach JH et al . Potent and selective nonpeptide inhibitors of caspases 3 and 7 inhibit apoptosis and maintain cell functionality J Biol Chem 2000 275: 16007–16014

    Article  CAS  PubMed  Google Scholar 

  41. Mills JEJ, De Esch IJP, Perkins TDJ, Dean PM . SLATE: a method for the superposition of flexible ligands J Comput-Aided Mol Design 2001 15: 81–96

    Article  CAS  Google Scholar 

  42. Willett P . Chemical similarity searching J Chem Inf Comput Sci 1998 38: 983–996

    Article  CAS  Google Scholar 

  43. Cramer RD, Patterson DE, Clark RD, Soltanshahi F, Lawless MS . Virtual compound libraries: a new approach to decision making in molecular discovery research J Chem Inf Comput Sci 1998 38: 1010–1023

    Article  CAS  Google Scholar 

  44. Clark RD, Langton WJ . Balancing representativeness against diversity using optimizable K-dissimilarity and hierarchical clustering J Chem Inf Comput Sci 1998 38: 1079–1086

    Article  CAS  Google Scholar 

  45. Van Drie JH, Lajiness MJ . Approaches to virtual drug design Drug Discovery Today 1998 3: 274–283

    Article  CAS  Google Scholar 

  46. Lewell XQ, Judd DB, Watson SP, Hann MM . RECAP—retrosynthetic combinatorial analysis procedure: a powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry J Chem Inf Comput Sci 1998 38: 511–522

    Article  CAS  PubMed  Google Scholar 

  47. Bailey DS, Dean PM . Pharmacogenomics and its impact on drug design and optimisation Ann Rep Med Chem 1999 34: 339–348

    CAS  Google Scholar 

  48. Zanders ED . Gene expression analysis as an aid to the identification of drug targets Pharmacogenomics 2000 1: 375–384

    Article  CAS  PubMed  Google Scholar 

  49. Kliewer SA, Lehmann JM, Willson TM . Orphan nuclear receptors: shifting endocrinology into reverse Science 1999 284: 757–760

    Article  CAS  PubMed  Google Scholar 

  50. Willson TM, Brown PJ, Sternbach DD, Henke BR . The PPARs: from orphan receptors to drug discovery J Med Chem 2000 43: 527–550

    Article  CAS  PubMed  Google Scholar 

  51. Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Gerlach JH et al . Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma Nature 1998 395: 137–143

    Article  CAS  PubMed  Google Scholar 

  52. Gupta RA, Tan J, Krause WF, Geraci MW, Willson TM, Gerlach JH et al . Prostacyclin-mediated activation of peroxisome proliferator-activated receptor δ in colorectal cancer Proc Natl Acad Sci USA 2000 97: 13275–13280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guerre-Millo M, Gervois P, Raspe E, Madsen L, Poulain P, Gerlach JH et al . Peroxisome proliferator-activated receptor alpha activators improve insulin sensitivity and reduce adiposity J Biol Chem 2000 275: 16638–16642

    Article  CAS  PubMed  Google Scholar 

  54. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Gerlach JH et al . The hormone resistin links obesity to diabetes Nature 2001 409: 307–312

    Article  CAS  PubMed  Google Scholar 

  55. Levitzki A . Protein tyrosine kinase inhibitors as novel therapeutic agents Pharmacol Ther 1999 82: 231–239

    Article  CAS  PubMed  Google Scholar 

  56. Roberts CJ, Nelson B, Marton MJ, Stoughton RS, Meyer MR, Gerlach JH et al . Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles Science 2000 287: 873–880

    Article  CAS  PubMed  Google Scholar 

  57. Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD . Functional discovery via a compendium of expression profiles Cell 2000 102: 109–126

    Article  CAS  PubMed  Google Scholar 

  58. Weinstein JN, Myers TG, O’Connor PM, Friend SH, Fornace AJ, Gerlach JH et al . An information-intensive approach to the molecular pharmacology of cancer Science 1997 275: 343–349

    Article  CAS  PubMed  Google Scholar 

  59. Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Gerlach JH et al . A gene expression database for the molecular pharmacology of cancer Nature Genet 2000 24: 236–244

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Dr Iwan de Esch for providing the information for Figures 6, 7 and 8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Bailey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailey, D., Zanders, E. & Dean, P. Site-specific molecular design and its relevance to pharmacogenomics and chemical biology. Pharmacogenomics J 1, 38–47 (2001). https://doi.org/10.1038/sj.tpj.6500004

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500004

Keywords

Search

Quick links