Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Allelic association of sequence variants in the herpes virus entry mediator-B gene (PVRL2) with the severity of multiple sclerosis

Abstract

Discrepant findings have been reported regarding an association of the apolipoprotein E (APOE) gene with the clinical course of multiple sclerosis (MS). To resolve these discrepancies, we examined common sequence variation in six candidate genes residing in a 380-kb genomic region surrounding and including the APOE locus for an association with MS severity. We genotyped at least three polymorphisms in each of six candidate genes in 1540 Caucasian MS families (729 single-case and multiple-case families from the United States, 811 single-case families from the UK). By applying the quantitative transmission/disequilibrium test to a recently proposed MS severity score, the only statistically significant (P=0.003) association with MS severity was found for an intronic variant in the Herpes Virus Entry Mediator-B Gene (PVRL2). Additional genotyping extended the association to a 16.6 kb block spanning intron 1 to intron 2 of the gene. Sequencing of PVRL2 failed to identify variants with an obvious functional role. In conclusion, the analysis of a very large data set suggests that genetic polymorphisms in PVRL2 may influence MS severity and supports the possibility that viral factors may contribute to the clinical course of MS, consistent with previous reports.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Hauser SL, Goodkin SL . Multiple sclerosis and other demyelinating diseases. In: Braunwald E, Fauci AD, Kasper DL, Hauser SL, Longo DL, Jameson JL (eds). Harrison's Principle of Internal Medicine. McGraw Hill: New York, 2001, pp 2452–2461.

    Google Scholar 

  2. Weinshenker BG . Natural history of multiple sclerosis. Ann Neurol 1994; 36 (Suppl): S6–S11.

    Article  Google Scholar 

  3. Kantarci OH, Weinshenker BG . Natural history of multiple sclerosis. Neurol Clin 2005; 23: 17–38.

    Article  Google Scholar 

  4. Ebers GC, Sadovnick AD, Risch NJ . A genetic basis for familial aggregation in multiple sclerosis. Canadian Collaborative Study Group. Nature 1995; 377: 150–151.

    Article  CAS  Google Scholar 

  5. Sadovnick AD, Armstrong H, Rice G, Bulman DE, Hashimoto L, Paty DW et al. A population based study of multiple sclerosis in twins: update. Ann Neurol 1993; 33: 281–285.

    Article  CAS  Google Scholar 

  6. Kantarci OH, De Andrade M, Weinshenker BG . Identifying disease modifying genes in multiple sclerosis. J Neuroimmunol 2002; 123: 144–159.

    Article  CAS  Google Scholar 

  7. Chapman J, Sylantiev C, Nisipeanu P, Korczyn AD . Preliminary observations on APOE epsilon4 allele and progression of disability in multiple sclerosis. Arch Neurol 1999; 56: 1484–1487.

    Article  CAS  Google Scholar 

  8. Evangelou N, Jackson M, Beeson D, Palace J . Association of the APOE epsilon4 allele with disease activity in multiple sclerosis. J Neurol Neurosurg Psychiatry 1999; 67: 203–205.

    Article  CAS  Google Scholar 

  9. Hogh P, Oturai A, Schreiber K, Blinkenberg M, Jorgensen OS, Ryder L et al. Apoliprotein E and multiple sclerosis: impact of the epsilon-4 allele on susceptibility, clinical type and progression rate. Mult Scler 2000; 6: 226–230.

    Article  CAS  Google Scholar 

  10. Fazekas F, Strasser-Fuchs S, Kollegger H, Berger T, Kristoferitsch W, Schmidt H et al. Apolipoprotein E epsilon4 is associated with rapid progression of multiple sclerosis. Neurology 2001; 57: 853–857.

    Article  CAS  Google Scholar 

  11. Fazekas F, Strasser-Fuchs S, Schmidt H, Enzinger C, Ropele S, Lechner A et al. Apolipoprotein E genotype related differences in brain lesions of multiple sclerosis. J Neurol Neurosurg Psychiatry 2000; 69: 25–28.

    Article  CAS  Google Scholar 

  12. Chapman J, Vinokurov S, Achiron A, Karussis DM, Mitosek-Szewczyk K, Birnbaum M et al. APOE genotype is a major predictor of long-term progression of disability in MS. Neurology 2001; 56: 312–316.

    Article  CAS  Google Scholar 

  13. Schmidt S, Barcellos LF, DeSombre K, Rimmler JB, Lincoln RR, Bucher P et al. Association of polymorphisms in the apolipoprotein E region with susceptibility to and progression of multiple sclerosis. Am J Hum Genet 2002; 70 (3): 708–717.

    Article  CAS  Google Scholar 

  14. Kantarci OH, Hebrink DD, Achenbach SJ, Pittock SJ, Altintas A, Schaefer-Klein JL et al. Association of APOE polymorphisms with disease severity in MS is limited to women. Neurology 2004; 62: 811–814.

    Article  CAS  Google Scholar 

  15. Enzinger C, Ropele S, Smith S, Strasser-Fuchs S, Poltrum B, Schmidt H et al. Accelerated evolution of brain atrophy and ‘black holes’ in MS patients with APOE-epsilon 4. Ann Neurol 2004; 55: 563–569.

    Article  CAS  Google Scholar 

  16. Ferri C, Sciacca FL, Veglia F, Martinelli F, Comi G, Canal N et al. APOE e2-4 and -491 polymorphisms are not associated with MS. Neurology 1999; 53: 888–889.

    Article  CAS  Google Scholar 

  17. Weatherby SJ, Mann CL, Fryer AA, Strange RC, Hawkins CP, Stevenson VL et al. No association between the APOE epsilon4 allele and outcome and susceptibility in primary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 2000; 68: 532.

    Article  Google Scholar 

  18. Pirttila T, Haanpaa M, Mehta PD, Lehtimaki T . Apolipoprotein E (APOE) phenotype and APOE concentrations in multiple sclerosis and acute herpes zoster. Acta Neurol Scand 2000; 102: 94–98.

    Article  CAS  Google Scholar 

  19. Masterman T, Zhang Z, Hellgren D, Salter H, Anvret M, Lilius L et al. APOE genotypes and disease severity in multiple sclerosis. Mult Scler 2002; 8: 98–103.

    Article  CAS  Google Scholar 

  20. Savettieri G, Andreoli V, Bonavita S, Cittadella R, Caltagirone C, Fazio MC et al. Apolipoprotein E genotype does not influence the progression of multiple sclerosis. J Neurol 2003; 250: 1094–1098.

    Article  CAS  Google Scholar 

  21. Niino M, Kikuchi S, Fukazawa T, Yabe I, Tashiro K . Polymorphisms of apolipoprotein E and Japanese patients with multiple sclerosis. Mult Scler 2003; 9: 382–386.

    Article  CAS  Google Scholar 

  22. Guerrero AL, Bueno V, Hernandez MT, Martin-Serradilla JI, Carrasco E, Cuadrado I . Apolipoprotein E polymorphism as a predictor of progression of multiple sclerosis. Neurologia 2003; 18: 146–148.

    CAS  PubMed  Google Scholar 

  23. Santos M, do Carmo CM, Edite RM, Jose SM, Monteiro M, Valenca A et al. Genotypes at the APOE and SCA2 loci do not predict the course of multiple sclerosis in patients of Portuguese origin. Mult Scler 2004; 10: 153–157.

    Article  Google Scholar 

  24. Barcellos LF, Thomson G, Carrington M, Schafer J, Begovich AB, Lin P et al. Chromosome 19 single-locus and multilocus haplotype associations with multiple sclerosis. Evidence of a new susceptibility locus in Caucasian and Chinese patients. JAMA 1997; 278: 1256–1261.

    Article  CAS  Google Scholar 

  25. Pericak-Vance MA, Rimmler JB, Martin ER, Haines JL, Garcia ME, Oksenberg JR et al. Linkage and association analysis of chromosome 19q13 in multiple sclerosis. Neurogenetics 2001; 3: 195–201.

    Article  CAS  Google Scholar 

  26. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 1993; 261: 921–923.

    Article  CAS  Google Scholar 

  27. Li Y-J, Hauser MA, Scott WK, Martin ER, Booze MW, Qin XJ et al. Apolipoprotein E controls the risk and age at onset of Parkinson Disease. Neurology 2004; 62: 2005–2009.

    Article  CAS  Google Scholar 

  28. Li Y-J, Pericak-Vance MA, Haines JL, Siddique N, McKenna-Yasek D, Hung WY et al. Apolipoprotein E is associated with age at onset of amyotrophic lateral sclerosis. Neurogenetics 2004; 5: 209–213.

    Article  CAS  Google Scholar 

  29. Ignatius MJ, Gebicke-Harter PJ, Skene JH, Schilling JW, Weisgraber KH, Mahley RW et al. Expression of apolipoprotein E during nerve degeneration and regeneration. Proc Natl Acad Sci USA 1986; 83: 1125–1129.

    Article  CAS  Google Scholar 

  30. Laskowitz DT, Horsburgh K, Roses AD . Apolipoprotein E and the CNS response to injury. J Cereb Blood Flow Metab 1998; 18: 465–471.

    Article  CAS  Google Scholar 

  31. Karussis D, Michaelson DM, Grigoriadis N, Korezyn AD, Mizrachi-Koll R, Chapman S et al. Lack of apolipoprotein-E exacerbates experimental allergic encephalomyelitis. Mult Scler 2003; 9: 476–480.

    Article  CAS  Google Scholar 

  32. Helgason A, Yngvadottir B, Hrafnkelsson B, Gulcher J, Stefansson K . An Icelandic example of the impact of population structure on association studies. Nat Genet 2005; 37: 90–95.

    Article  CAS  Google Scholar 

  33. Martin ER, Lai EH, Gilbert JR, Rogala AR, Afshari AJ, Riley J et al. SNPing away at complex diseases: analysis of single-nucleotide polymorphisms around APOE in Alzheimer disease. Am J Hum Genet 2000; 67: 383–394.

    Article  CAS  Google Scholar 

  34. Rosche B, Cepok S, Stei S, Vogel F, Grummel V, Hoffmann S et al. The role of the polio virus receptor and the herpesvirus entry mediator B genes for the development of MS. J Neuroimmunol 2004; 156: 171–177.

    Article  CAS  Google Scholar 

  35. Burwick RM, Ramsay PP, Haines JL, Hauser SL, Oksenberg JR, Pericak-Vance MA et al. APOE in multiple sclerosis susceptibility and disease severity: meta- and pooled analyses. Neurol 2006; 66: 1373–1383.

    Article  CAS  Google Scholar 

  36. Martinez WM, Spear PG . Structural features of nectin-2 (HveB) required for herpes simplex virus entry. J Virol 2001; 75: 11185–11195.

    Article  CAS  Google Scholar 

  37. Nissim-Rafinia M, Kerem B . The splicing machinery is a genetic modifier of disease severity. Trends Genet 2005; 21: 480–483.

    Article  CAS  Google Scholar 

  38. Hiller M, Huse K, Szafranski K, Jahn N, Hampe J, Schreiber S et al. Single-nucleotide polymorphisms in NAGNAG acceptors are highly predictive for variations of alternative splicing. Am J Hum Genet 2006; 78: 291–302.

    Article  CAS  Google Scholar 

  39. Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003; 423: 506–511.

    Article  CAS  Google Scholar 

  40. Kramer MF, Cook WJ, Roth FP, Zhu J, Holman H, Knipe DM et al. Latent herpes simplex virus infection of sensory neurons alters neuronal gene expression. J Virol 2003; 77: 9533–9541.

    Article  CAS  Google Scholar 

  41. Khanna KM, Lepisto AJ, Decman V, Hendricks RL . Immune control of herpes simplex virus during latency. Curr Opin Immunol 2004; 16: 463–469.

    Article  CAS  Google Scholar 

  42. Decman V, Kinchington PR, Harvey SA, Hendricks RL . Gamma interferon can block herpes simplex virus type 1 reactivation from latency, even in the presence of late gene expression. J Virol 2005; 79: 10339–10347.

    Article  CAS  Google Scholar 

  43. Ferrante P, Mancuso R, Pagani E, Guerini FR, Calvo MG, Saresella M et al. Molecular evidences for a role of HSV-1 in multiple sclerosis clinical acute attack. J Neurovirol 2000; 6 (Suppl 2): S109–S114.

    CAS  PubMed  Google Scholar 

  44. Fazakerley JK, Walker R . Virus demyelination. J Neurovirol 2003; 9: 148–164.

    Article  CAS  Google Scholar 

  45. Bello-Morales R, Fedetz M, Alcina A, Tabares E, Lopez-Guerrero JA . High susceptibility of a human oligodendroglial cell line to herpes simplex type 1 infection. J Neurovirol 2005; 11: 190–198.

    Article  CAS  Google Scholar 

  46. Kastrukoff LF, Kim SU . Oligodendrocytes from human donors differ in resistance to herpes simplex virus 1 (HSV-1). Glia 2002; 38: 87–92.

    Article  Google Scholar 

  47. Challoner PB, Smith KT, Parker JD, MacLeod DL, Coulter SN, Rose TM et al. Plaque-associated expression of human herpesvirus 6 in multiple sclerosis. Proc Natl Acad Sci USA 1995; 92: 7440–7444.

    Article  CAS  Google Scholar 

  48. Goodkin DE, Doolittle TH, Hauser SL, Ransohoff RM, Roses AD, Rudick RA . Diagnostic criteria for multiple sclerosis research involving multiply affected families. Arch Neurol 1991; 48: 805–807.

    Article  CAS  Google Scholar 

  49. Haines JL, Ter-Minassian M, Bazyk A, Gusella JF, Kim DJ, Terwedow H et al. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. Nat Genet 1996; 13: 469–471.

    Article  CAS  Google Scholar 

  50. Barcellos LF, Begovich AB, Reynolds RL, Caillier SJ, Brassat D, Schmidt S et al. Linkage and association with the NOS2A locus on chromosome 17q11 in multiple sclerosis. Ann Neurol 2004; 55: 793–800.

    Article  CAS  Google Scholar 

  51. Hensiek AE, Roxburgh R, Smilie B, Coraddu F, Akesson E, Holmans P et al. Updated results of the United Kingdom linkage-based genome screen in multiple sclerosis. J Neuroimmunol 2003; 143: 25–30.

    Article  CAS  Google Scholar 

  52. Roxburgh RH, Seaman SR, Masterman T, Hensiek AE, Sawcer SJ, Vukusic S et al. Multiple sclerosis severity score: using disability and disease duration to rate disease severity. Neurology 2005; 64: 1144–1151.

    Article  CAS  Google Scholar 

  53. Kurtzke JF . Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 1983; 33: 1444–1452.

    Article  CAS  Google Scholar 

  54. Vance JM, Ben Othmane K . Methods of genotyping. In: Haines JL, Pericak-Vance MA (eds). Approaches to Gene Mapping in Complex Human Diseases. Wiley-Liss: New York, 1998, pp 213–228.

    Google Scholar 

  55. Xu H, Gregory SG, Hauser ER, Stenger JE, Pericak-Vance MA, Vance JM et al. SNPselector: a web tool for selecting SNPs for genetic association studies. Bioinformatics 2005; 21: 4181–4186.

    Article  CAS  Google Scholar 

  56. Kalman B, Li S, Chatterjee D, O'Connor J, Voehl MR, Brown MD et al. Large scale screening of the mitochondrial DNA reveals no pathogenic mutations but a haplotype associated with multiple sclerosis in Caucasians. Acta Neurol Scand 1999; 99: 16–25.

    Article  CAS  Google Scholar 

  57. Andrews HE, Nichols PP, Bates D, Turnbull DM . Mitochondrial dysfunction plays a key role in progressive axonal loss in Multiple Sclerosis. Med Hypotheses 2005; 64: 669–677.

    Article  CAS  Google Scholar 

  58. Bonetti B, Stegagno C, Cannella B, Rizzuto N, Moretto G, Raine CS . Activation of NF-kappaB and c-jun transcription factors in multiple sclerosis lesions. Implications for oligodendrocyte pathology. Am J Pathol 1999; 155: 1433–1438.

    Article  CAS  Google Scholar 

  59. Miterski B, Bohringer S, Klein W, Sindern E, Haupts M, Schimrigk S et al. Inhibitors in the NFkappaB cascade comprise prime candidate genes predisposing to multiple sclerosis, especially in selected combinations. Genes Immun 2002; 3: 211–219.

    Article  CAS  Google Scholar 

  60. Flores N, Duran C, Blasco MR, Puerta C, Dorado B, Garcia-Merino A et al. NFkappaB and AP-1 DNA binding activity in patients with multiple sclerosis. J Neuroimmunol 2003; 135: 141–147.

    Article  CAS  Google Scholar 

  61. Kurtzke JF . Epidemiologic evidence for multiple sclerosis as an infection. Clin Microbiol Rev 1993; 6: 382–427.

    Article  CAS  Google Scholar 

  62. Dalgleish AG . Viruses and multiple sclerosis. Acta Neurol Scand Suppl 1997; 169: 8–15.

    Article  CAS  Google Scholar 

  63. Monteyne P, Bureau JF, Brahic M . Viruses and multiple sclerosis. Curr Opin Neurol 1998; 11: 287–291.

    Article  CAS  Google Scholar 

  64. Haynes C, Speer MC, Peedin M, Roses AD, Haines JL, Vance JM et al. PEDIGENE: A comprehensive data management system to facilitate efficient and rapid disease gene mapping. Am J Hum Genet 1995; 57: A193.

    Google Scholar 

  65. O'Connell JR, Weeks DE . PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998; 63: 259–266.

    Article  CAS  Google Scholar 

  66. Abecasis GR, Cherny SS, Cookson WO, Cardon LR . Merlin – rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97–101.

    Article  CAS  Google Scholar 

  67. Zaykin D, Zhivotovsky L, Weir BS . Exact tests for association between alleles at arbitrary numbers of loci. Genetica 1995; 96: 169–178.

    Article  CAS  Google Scholar 

  68. Hartl DL . A Primer of Population Genetics, 2nd edn. Sinauer Associates Inc.: Sunderland, MA, 1987.

    Google Scholar 

  69. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  70. Monks SA, Kaplan NL . Removing the sampling restrictions from family-based tests of association for a quantitative-trait locus. Am J Hum Genet 2000; 66: 576–592.

    Article  CAS  Google Scholar 

  71. Abecasis GR, Cardon LR, Cookson WO . A general test of association for quantitative traits in nuclear families. Am J Hum Genet 2000; 66: 279–292.

    Article  CAS  Google Scholar 

  72. Nyholt DR . A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 2004; 74: 765–769.

    Article  CAS  Google Scholar 

  73. Li J, Ji L . Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity 2005; 95: 221–227.

    Article  CAS  Google Scholar 

  74. Li YJ, Scott WK, Zhang L, Lin PI, Oliveira SA, Skelly T et al. Revealing the role of glutathione S-transferase omega in age-at-onset of Alzheimer and Parkinson diseases. Neurobiol Aging (E-pub ahead of print (doi:10.1016/j.newobiolaging2005:05.013).

  75. Laird NM, Horvath S, Xu X . Implementing a unified approach to family-based tests of association. Genet Epidemiol 2000; 19 (Suppl 1): S36–S42.

    Article  Google Scholar 

  76. Horvath S, Xu X, Lake SL, Silverman EK, Weiss ST, Laird NM . Family-based tests for associating haplotypes with general phenotype data: application to asthma genetics. Genet Epidemiol 2004; 26 (1): 61–69.

    Article  Google Scholar 

  77. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all patients and families who generously participated in this study. We thank the collaborating clinics and physicians for referring individuals to the study. This research was supported by National Institutes of Health Grants NS32830, NS26799 and NS049477.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to S Schmidt.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity's website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, S., Pericak-Vance, M., Sawcer, S. et al. Allelic association of sequence variants in the herpes virus entry mediator-B gene (PVRL2) with the severity of multiple sclerosis. Genes Immun 7, 384–392 (2006). https://doi.org/10.1038/sj.gene.6364311

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364311

Keywords

This article is cited by

Search

Quick links