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Genetics of susceptibility to leprosy
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The ancient disease of leprosy can cause severe disability and disfigurement and is still a major health concern in many parts
of the world. Only a subset of those individuals exposed to the pathogen will go on to develop clinical disease and there is
a broad clinical spectrum amongst leprosy sufferers. The outcome of infection is in part due to host genes that influence control
of the initial infection and the host’s immune response to that infection. Identification of the host genes that influence host
susceptibility/resistance will enable a greater understanding of disease pathogenesis. In turn, this should facilitate development
of more effective therapeutics and vaccines. So far at least a dozen genes have been implicated in leprosy susceptibility and a
genome-wide linkage study has lead to the identification of at least one positional candidate. These findings are reviewed here.
Genes and Immunity (2002) 3, 441–453. doi:10.1038/sj.gene.6363926
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Introduction

Many think of leprosy as a disease of the past and it is
true that the worldwide prevalence is declining, in part
due to improved case detection and effective multi-drug
therapy. Globally, however, there are still 700 000 newly
detected cases each year, mainly in Africa, Asia and Latin
America1 and leprosy represents a major health problem
in Brazil, India, Madagascar, Myanmar, Nepal and
Mozambique. The causative agent of leprosy, Mycobac-
terium leprae, was identified by Armauer Hansen in 1873.
It is an obligate intracellular pathogen that mainly infects
macrophages and Schwann cells, though it also multi-
plies in muscles and vascular endothelium, and can
infect other tissue such as the brain, eye and testis.
Unlike tuberculosis, which also results from infection
with a mycobacterium (M. tuberculosis), leprosy is not
often a direct killer. Instead, due to the infective agent’s
predilection for skin and peripheral nerves, the common
severe consequences of leprosy are deformity and
disability. This has significant social and economic
impact on both the patient and their community.
Leprosy is like tuberculosis in that in the majority of

cases, infection does not lead to clinical disease and
when disease does develop, much of the damage is not
caused by the infecting organism, but rather by the host’s
immune responses to that organism. Host factors that
influence control of the initial infection and the host’s
immune response play a significant role in the outcome
of infection with either M. tuberculosis or M. leprae.
In leprosy the significance of the host response to

infection is illustrated by the broad clinical spectrum
observed amongst those that develop disease. At one
pole is tuberculoid leprosy, characterized by strong cell-
mediated immunity, a Th1 CD4+ cytokine profile (IL2,
IFN-g), very few bacteria and localized lesions. At the
other pole is lepromatous leprosy, characterized by a lack

of cell-mediated immunity, Th2 CD4+ responses (IL4 and
IL5), a strong humoral response, disseminated progres-
sive disease and large numbers of bacteria. Thus
tuberculoid patients can be thought of as those exhibiting
the most resistance whereas lepromatous patients are
those exhibiting the least. This is not to say that the
pathogenesis associated with the more resistant pole is
necessarily milder; strong Th1 responses that contain the
bacterium can result in rapid and severe nerve damage.

Evidence that host genetic factors contribute to
susceptibility to leprosy comes from epidemiological
data, segregation and twin studies.2–6 The goal of
identification of host genetic factors that underlie
susceptibility to leprosy can be approached in at least
two ways: firstly, candidate gene studies can be carried
out on genes of known function that have a possible
biological role in the control of infection or disease. A
second approach utilizes a non-targeted genome-wide
linkage analysis, in which increased sharing of chromo-
somal regions by affected individuals leads to identifica-
tion of positional candidates. How M. leprae targets
Schwann cells, exactly how it brings about nerve damage
and how it is killed in macrophages have not been fully
elucidated and it is possible that host genes which
influence these processes may influence the outcome of
infection. It is clear, however, that the development of
appropriate cell-mediated immunity is important in the
control of mycobacterial disease. Several genes that may
modulate cell-mediated immunity have been investi-
gated and some appear to have a role in either suscep-
tibility to leprosy per se, or to leprosy type (Table 1).
These genes and the results of a genome-wide linkage
analysis of leprosy susceptibility are discussed below.

Major histocompatibility complex
(MHC) region

Linkage and/or association studies have implicated
several genes in the MHC region in susceptibility
to leprosy. However the presence of strong linkage
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disequilibrium in combination with a relatively
large number of closely spaced, polymorphic
genes encoding products involved in immune responses
has made the task of determining true functional
associations a difficult one. The most consistent results
indicate that a locus in the class II region is involved in
susceptibility to leprosy per se and/or modulation of
disease.

HLA genes
Located in the MHC region, HLA genes are highly
polymorphic and present antigenic peptides to ab Tcells.
The HLA genes were one of the first class of genes to be
implicated in susceptibility to leprosy, and there have
been numerous studies in many populations, probably
partly because their gene products were such a likely
biological candidate (the main hypothesis being that

Table 1 Summary of published non-HLA leprosy association studies

Gene(s) Population Polymorphisms typed Phenotype Allele/genotype/haplotype Study size Ref.

COL3A1 India COL3A1 MBa COL3A1 250 bp susc.b 16 PBd 132

CTLA4 CTLA4 CTLA4 104 bp pro.c 9 MB
size allomorphs 14 con.e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SLC11A1 India Promoter microsatellite,
Exon 2, 469+14G/C,
(TGTG)n

Leprosy No association 124 MB
107 PB
166 con.

128

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SLC11A1 Mali Promoter microsatellite,
469+14G/C, (TGTG)n

Leprosy type TGTG het.f 181 MB
92 PB
201 con.

129

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TLR2 Korea R 677W MB 677W 45 MB 160
41 PB
45 con.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C4B Brazil C4B, C2, BF, C4A ENLg C4B*Q0 109 cases
46 ENL
172 con.

82

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HSPA1A India HSPA1A PB A 49 PB 88
38 con.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MICA/HLA B
haplotype

South China HLA-DRB1, MB HLA-B46/MICA-5A5 50 MB 21

HLA B, 19 PB
MICA-5A 112 con.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TAP2 North India TAP1: I333V, N637G, PB TAP2-B 50 PB 58
TAP2: V379L, A565T,
A665T

40 con.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TNFa Bengali Indians �308 MB TNF*2 121 MB 42
107 PB
160 con.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TNFa Brazil �308 Mitsuda response TNF*2 74 PB 75
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TNFa Brazil �308 Reaction rate TNF*2 het. 57 TNF*2
positive

79

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TNFa Brazil �308 MB TNF*2 90 PB 74
210 MB
92 con.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TNFa Brazil �308 Leprosy TNF*1 Th 27 NTi 4 32
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TNFa/LTA haplotype Brazil TNF -308,
LTA Nco1

Leprosy TNF*1/LTA*2 susc. T 26 NT 11 32

TNF*2/LTA*2 pro. T 2 NT 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VDR Bengali Indians Taq1 Leprosy type tt in PB 124 MB 128
TT in MB 107 PB

166 con.

amultibacillary (includes patients at/near lepromatous pole).
bsusceptible.
cprotective.
dpaucibacillary (includes patients at/near tuberculoid pole).
econtrols.
fheterozygotes.
gErythema Nodosum Leprosum.
hTransmitted.
iNot Transmitted.
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presentation of certain antigens in a specific HLA context
may influence the type of T-cell response that develops),
and partly because serological typings could be per-
formed in the pre-genotyping era.
A series of family studies in various populations have

shown non-random segregation of parental HLA haplo-
types amongst tuberculoid children7–11 and lepromatous
children.10,12 As HLA haplotypes segregated randomly
among healthy siblings8,10 it was suggested early on that
genes in the MHC region might influence leprosy type
rather than susceptibility to leprosy per se.13

Class I region
Several studies comparing HLA class I gene frequencies
in leprosy cases and controls have found associations
either with the polar forms of leprosy, or with leprosy
itself, however these suggested associations have not
been replicated.14–20

Recently an HLA-B46, MICA-5A5 haplotype was
found less often amongst multibacillary leprosy patients
compared to controls in a small south China study,
indicating that this haplotype may carry a gene that is
protective against multibacillary leprosy in this popula-
tion.21 MICA itself is a candidate susceptibility locus:
located in the HLA class I region, MHC class 1 chain-
related (MIC) genes encode membrane-bound polypep-
tides that do not bind peptides or associate with
b2-microglobulin, but instead act as a co-stimulatory
signal by interaction with a receptor NKG2D to augment
T-cell activation. MICA cell surface expression can be up-
regulated not only by heat shock but also by infection
with cytomegalovirus (CMV)22 or M. tuberculosis.23 The
Chinese study found no association with leprosy and
B46�/5A5+ or B46+/5A5� haplotypes indicating that
neither the HLA B46 nor the MICA-5A5 allele was
sufficient to confer protection. The MICA-5A5 poly-
morphism is located in exon 5 and is a nucleotide triplet
repeat that encodes a series of alanine residues in the
transmembrane domain. There are numerous other
polymorphisms in the MICA gene, including many in
exons 2–4, which encode the extracellular domains that
bind to NKG2D24,25 and it is possible that one that
influences susceptibility to leprosy occurs on the B46/
MICA-5A5 haplotype.

Class II region
Numerous case–control studies have shown associations
between the class II HLA genes and leprosy. DQ alleles,
especially DQw1 have been shown to be associated with
tuberculoid leprosy in India,26,27 Korea,19 Thailand28 and
Japan,29 and with lepromatous leprosy in India15 and
Japan.18,30 DQw1 was also implicated in a meta-analysis
of pooled association studies31 and in a Venezuelan
lepromatous family study10 whereas in Shaw’s recent
Brazilian family study significant evidence for linkage
and association to tuberculoid leprosy and possibly
leprosy per se was found with DQB1, DQA1 and DRB1
variants.32 Unusual DQ restricted antigen-specific CD8
cells that predominantly produce IL4 were proposed to
act as suppressor cells in lepromatous patients;33 how-
ever, this does not explain the association with tubercu-
loid leprosy. Importantly, HLA-DQ1 is in strong linkage
disequilibrium with HLA-DR2 in most populations and
it has usually been difficult to discern whether the
primary association is with the DR or the DQ variant.

HLA-DR3 was associated with tuberculoid leprosy in
Mexico34 and in the South American populations of
Surinam35 and Venezuela,10 whereas it was found at
lower frequencies in lepromatous patients.35,36 T-cell
proliferation responses to certain epitopes of the
mycobacterial hsp65 (p3–13) are DR3 restricted37

and DR3 was associated with low T-cell responses
to M. leprae in tuberculoid patients.38,39 Increased HLA-
DR2 frequencies have been reported in both tuberculoid
and lepromatous patients compared to con-
trols.15,18,19,28,29,31,40,41 Association studies have also shown
that DR2 is increased in leprosy patients of all subtypes
compared to controls.42,43 Family-based studies have
shown a skewed distribution of DR2 alleles in Indian44

and Egyptian tuberculoid siblings.11 Molecular HLA
typing has allowed DR2 to be refined into HLA-DRB1
subtypes. DRB1*1501 has been associated with leproma-
tous leprosy26,30 whereas DRB1*1502 has been associated
with tuberculoid leprosy.45 The *1501 and *1502 alleles
differ from each other by a single amino acid at codon 86.
Class II molecules have polymorphic pockets that
accommodate the side chains of bound peptides. The
codon 86 residue lies in binding pocket 1. In another
Indian study, both 1501 and 1502 were found to be
associated with tuberculoid leprosy,46 indicating that the
residue in pocket 1 may not be involved in determining
the outcome of leprosy infection. Instead it appears that
certain residues that contribute to the net charge in the
putative peptide-specific binding pocket 4 may be more
important.47 It is hypothesized that net negative or
neutral charges in binding pocket 4 cause poor binding
of the DRB1 molecule to M. leprae antigens. As HLA
molecules with the highest affinity to peptide produce
the greatest T-cell proliferation and IFN-g response,48

peptide presentation by low affinity class II molecules
may result in muted cell-mediated immunity.47 Alter-
natively, peptide presentation by specific class II mole-
cules may result in activation of suppressor/regulatory
T-cells.49

Transporter 2, ATP-binding cassette, sub-family B (TAP2).
TAP2 is critical for peptide translocation from the cytosol
into the endoplasmic reticulum and for peptide binding
to MHC class I molecules. Various combinations of
polymorphisms at codons 379, 565 and 665 result in eight
TAP2 alleles: (A–H). In the rat, products of different
TAP2 alleles differ in permissiveness to transport
peptides into the endoplasmic reticulum, thus modifying
the spectrum of peptides presented by class I molecules
on the cell surface.50 Although some immune responses
to infectious pathogens and autoimmune diseases are
apparently independently associated with human TAP2
alleles,51–55 it is unclear whether differences in human
TAP2 alleles are functionally relevant.56,57 Nevertheless,
TAP2-B has been reported to be associated with
tuberculoid leprosy and TAP2-A/F was increased in
pulmonary tuberculosis patients in North India,58 in-
dicating that TAP2 alleles may influence mycobacterial
susceptibility in this population.

Class III region
Tumor necrosis factor alpha (TNFa). The TNFa protein
has pleiotropic effects which straddle the innate and
adaptive immune responses. Produced mainly by macro-
phages, in mice it is involved in macrophage activation
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and, possibly, killing of intracellular M. leprae as well as
efficient antigen presentation through the class II
molecules. It is also an important modulator of the
cytokine production required for effective leukocyte
localization and thus granuloma formation. One hypoth-
esis for how TNFa may influence infectious disease in
humans is that polymorphisms leading to low produc-
tion could result in insufficient activation of macro-
phages, such that they are unable to kill mycobacteria.
Alternatively, the important role TNFa plays in granulo-
ma formation may mean that low TNFa levels result in a
failure to contain infectious foci. On the other hand, TNFa
overproduction may influence disease progression by
inducing local tissue damage. Finally, a recent study has
found that TNFa production supports virulent M.
tuberculosis growth in human alveolar macrophages,
leading the authors to suggest that mycobacteria may
deliberately augment TNFa production as a method of
immune invasion, for example by inducing apoptosis of
infected cells and thus enabling their spread to unin-
fected macrophages.59

There are numerous polymorphisms in the TNFa
promoter, several of which may be involved in regulation
of TNFa expression. A single nucleotide polymorphism
at �863 affects the binding of the NF kappa B p50-p50
dimer to an NF kappa B regulatory site.60 The base
change appears to inhibit p50–p50 binding, thereby
reducing p50–p50 repression of reporter gene transcrip-
tion. Another promoter polymorphism, �376, lies in a
region of multiple DNA–protein interactions. The G to A
change introduces a binding site for the transcription
factor OCT-1. Recruitment of OCT-1 results in an increase
in basal TNFa expression in human monocytes and the A
allele has been associated with susceptibility to cerebral
malaria.61 The only TNFa polymorphism that has been
investigated in relation to leprosy susceptibility is a G to
A substitution located in the promoter, at position -308.
The alleles have been designated TNF*1 and TNF*2, for
G and A, respectively. Initial studies using TNFa
promoter reporter constructs suggested the TNF*2 allele
is associated with increased TNFa levels62–64 but this has
been disputed by others.65–68 Recently, it was shown that
elevated TNFa levels are produced by TNF*2 only when
certain cell types and stimuli are used.64 Consistent with
the hypothesis that the �308 polymorphism is functional,
the TNF*2 allele has been associated with a variety of
diseases in which excessive TNFa production has been
postulated to be involved, including fatal meningococcal
disease,69 mucocutaneous leishmaniasis,70 scarring tra-
choma,71 cerebral malaria72 and inflammatory bowel
disease.73

The TNF*2 allele has been associated with lepromatous
leprosy in Bengali Indians42 whereas in southern Brazil
this allele appears to be protective against severe
leprosy.74 TNF*2 also appears to be protective against
lepromatous leprosy, tuberculoid leprosy and leprosy
per se in northeastern Brazil, while TNF*1 confers
susceptibility.32 Furthermore, Brazilian leprosy patients
that carry the TNF*2 allele have greater skin inflamma-
tory responses to lepromin than those that do not;75 thus,
in Brazil it appears that increased production of TNFa
may be important for inducing protective immune
responses against leprosy.

TNFa levels have been shown to be increased during
reaction responses in leprosy patients.76,77 Reaction

responses are the cause of significant tissue damage
and in combination with transforming growth factor b1,
TNFa causes significant Schwann cell death in vitro.78

Thus it has been hypothesized that alleles that enhance
TNFa production may be associated with the adverse
effects of reaction responses. In an analysis of 57 TNF*2-
positive leprosy patients, reaction responses were found
much more frequently amongst heterozygotes compared
to homozygotes; however, TNFa levels were similar for a
small series of both TNF*1 and TNF*2 patients during
and in the absence of reaction, and both sets of patients
showed similar increases in TNFa levels during reaction,
indicating that these polymorphisms may not influence
TNFa levels in vivo.79 It would be of interest to reassess
these associations in a larger data set.

Lymphotoxin a (LTA, formerly TNFb). The LTA gene is
located close to TNFa and encodes lymphotoxin a, a
chemokine secreted by lymphocytes and natural killer
cells. Soluble lymphotoxin a homotrimers can bind to the
same receptors as TNFa whereas heterotrimers formed
with membrane-bound lymphotoxin b interact with
the lymphotoxin b receptor. Through these receptors,
lymphotoxin a exerts pleiotropic immunomodulatory
effects. Recently, several loci in the HLA class II region
including LTA were linked to susceptibility to leprosy in
Brazil.32 A G to A substitution abolishes an NcoI
restriction site in intron 1 of LTA. This RFLP was not
found to be associated to leprosy susceptibility on its
own, however, two locus transmission disequilibrium
testing indicated that the haplotype TNF*1/LTA*2 was
associated with susceptibility while TNF*2/LTA*2 was
associated with protection. As no transmission distortion
was observed for the haplotype TNF*1/LTA*1, these data
suggest that another polymorphism that occurs on a
background of LTA*2 may have a role in leprosy
susceptibility. Polymorphisms that occur within the
LTA gene and its regulatory regions80,81 are potential
candidates.

Complement component 4B (C4B). Erythema Nodosum
Leprosum (ENL) is an immune reaction which can occur
in lepromatous leprosy patients and is postulated to be
immune complex mediated. C4B is a class III gene which
encodes the complement component 4B. The protein is
involved in opsonization of pathogens and immune
complex clearance. Non-expressed C4B alleles (C4B*Q0)
were found to be associated with lepromatous leprosy,
and especially ENL in Brazil.82 The possibility of linkage
disequilibrium with other MHC loci was not examined.

Heat shock 70kD protein 1A (HSPA1A). HSPA1A is also
located in the class III region of the MHC, between the
TNF and C2 genes. One of three 70 kD heat shock
proteins encoded in this region, HSPA1A is expressed
constitutively at a low level and its expression is
increased in response to thermal stress. Antigenic
peptides can associate with HSP70s, leading to their
uptake and presentation by antigen presenting cells.83

Furthermore, HSP70 activates macrophages by induction
of pro-inflammatory cytokine production via the
Myd88/NF kappa B pathway.84 This HSP70 response is
mediated by TLR2 and TLR4, and indeed TLR2 and
TLR4 may act synergistically, in a CD14-dependant
fashion, to activate NF kappa B.85 Another role of HSP70s
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is to block decay of the AU-rich mRNA of cytokines and
proto-oncogenes.86 Three HSPA1A alleles, A–C, result
from nucleotide substitutions at two sites (�110 and
+120). The �110 position lies adjacent to a heat shock
transcription factor binding site87 and thus may affect the
inducibility of HSPA1A. The HSPA1A-A allele was
found to be associated with tuberculoid leprosy in
a small North Indian study.88 In Italians, the HSPA1A
promoter polymorphisms were associated with specific
HLA class II haplotypes87,89 including those carrying
HLA DR3; however, in North India the HSPA1A
association appears to be independent of both class I or
II loci, indicating that HSPA1A may play a role in
susceptibility to leprosy in this population.

Other candidates
Solute carrier family 11 member 1 (SLC11A1, formerly
NRAMP1). Located at 2q35, SLC11A1 is the human
homologue of the mouse gene Slc11a1. Mice with a
naturally occurring Gly169Asp mutation are susceptible
to a range of intracellular pathogens including Leishmania
donovani, Samonella typhimurium, some strains of M.
bovis,90 M. lepraemurium,91,92 M. intracellulare,93 Toxoplasma
gondii,94 Candida albicans95 and Leishmania infantum,96 but
probably not M. tuberculosis.97–99 This substitution of a
charged amino acid in one of the putative transmem-
brane domains may cause misfolding of the Slc11a1
protein, resulting in it being targeted for degradation at
the endoplasmic reticulum. Null mutants have the same
susceptibility phenotypes as those mice carrying the
naturally occurring point mutation90 indicating that the
point mutation results in a completely non-functional
gene product.
The biochemical function of the SLC11A1/Slc11a1

gene product has not been completely elucidated and
indeed is the subject of some controversy.100 The mouse
Slc11a1 encodes an integral membrane protein expressed
in late endosomal and lysosomal membranes of macro-
phages. On phagocytosis it is relocated to the phagoso-
mal membrane where it is thought to act as a divalent
cation pump. The controversy arises over the direction in
which the cations are pumped. One theory is that
resistance is mediated by pumping iron out of the
phagosome, thus restricting the cations available to the
pathogen.101 The alternative theory is that the iron is
pumped into the phagosome, where it is used as a
catalyst in the Fenton/Haber Weiss reduction of super-
oxide anions to generate toxic hydroxyl radicals.102 In
either case, the Slc11a1 gene product seems to have a
direct antimicrobial effect, but it also has pleiotropic
effects that include macrophage activation and regula-
tion of the Th1:Th2 balance of the adaptive immune
response to intracellular pathogens.
Macrophages containing the mutant Slc11a1 have a

defect in antigen processing for presentation to T-cells103

possibly due to a metal ion requirement for metallopro-
tease activity and/or endosomal fusion events. In
addition, Slc11a1 appears to influence MHC class II
molecules and cytokines which regulate antigen presen-

tation, such as TNFa and IL1b.102 Such effects may

account for the polarity of Th1 vs Th2 responses observed
in mice with wild-type Slc11a1 compared to those with
the mutant gene after infection with L. donovani104 or

exposure to typhoid toxin.105

Human susceptibility to infection may in part be
determined by the direct influence of SLC11A1 on
antimicrobial activity of macrophages; however, the
reported pleiotropic effects in regulating Th1:Th2 bal-
ance in the immune response may also contribute. The
mouse Gly169Asp mutation is unknown in the human
homologue, but 11 other sequence variants have been
described.106–108 These include two missence coding
changes and a promoter microsatellite reported to affect
NRAMP1 expression levels.109 Variants in SLC11A1,
especially the higher expressing promoter microsatellite
allele 3, have been reported to be associated with
rheumatoid arthritis,110–112 Crohn’s disease,113,114 type 1
diabetes115 and sarcoidosis.116 However, these studies
have often been of limited size and some associations
have not been replicated in other populations. The
promoter microsatellite has also been associated with
susceptibility to various infectious diseases including
HIV in Colombia (allele 2),117 visceral leishmaniasis, post
kala-azar dermal leishmaniasis in the Sudan and severe
meningococcal meningitis (allele 3).118 Interestingly,
although Slc11a1 is not important in the control of M.
tuberculosis infection in mice,97 SLC11A1 has been
associated with susceptibility to tuberculosis in several
human populations including Japanese,119 Brazilians,120

Koreans121 and West Africans.122,123 In a large Canadian
Aboriginal family124 linkage was found to the chromo-
somal region containing SLC11A1 but linkage is not

found in most studies.125

The relevance of SLC11A1 to leprosy susceptibility is
less clear-cut. Non-random haplotype segregation in 20
South East Asian leprosy pedigrees implicated SLC11A1
in leprosy susceptibility; however, as haplotype sharing
was more pronounced in 16 Vietnamese families com-
pared to four Chinese families, the possibility of ethnic
heterogeneity was suggested.126 Such ethnic heterogene-
ity may explain why studies in other populations have
failed to find SLC11A1 linkage or association with
leprosy susceptibility per se.127–130 An association with
leprosy type was shown in Mali, where heterozygotes for
a TGTG insertion/deletion in the 30 untranslated region
were more common amongst multibacillary cases than in
paucibacillary cases.129 The putative functional micro-
satellite was also typed in the Mali study but no
associations were found with its alleles. It is not known
whether the TGTG polymorphism has a functional
effect.

Recently, the SLC11A1 region was found to be in
linkage with the Mitsuda response among both healthy
and affected members of 20 South East Asian leprosy
families.131 The Mitsuda response is a measure of the size
of the reaction obtained 28–30 days after intradermal
injection of M. leprae antigen. It is regarded as a measure
of the M. leprae induced granuloma-forming capacity.
Thus, this finding is in agreement with the hypothesis
that, in addition to, or instead of being important in
control of mycobacterial infection at the macrophage
level, SLC11A1 may play a role in the development
of acquired antimycobacterial immune responses in
humans.

COL3A1 and CTLA4. In a very small study, polymorph-
isms in the COL3A1 (procollagen III alpha I) and CTLA4
(cytotoxic T lymphocyte associated antigen) genes
located at 2q31–33 were found to be associated with
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leprosy.132 The dinucleotide repeat examined in CTLA4
occurs in the 30UTR, and at first alleles were postulated to
effect mRNA stability but recently strong linkage
disequilibrium has been shown between the dinucleotide
repeat alleles and known functional polymorphism
located in the promoter and exon 1.133 Interestingly, the
allele associated with protection against leprosy in India
also displayed increased transmission to IDDM siblings
in Russian families.134 Indeed markers in this region have
been linked and associated with several autoimmune
diseases.135 As CTLA4 is an important negative regulator
of T-cell activation it is a plausible biological candidate
for leprosy susceptibility; however, both COL3A and
CTLA4 lie close to the genes encoding CD28 and ICOS,
two other T-cell costimulatory receptors which are also
likely candidates. To date, no other reports of associa-
tions between leprosy and any of these genes have been
reported. Furthermore, it is just possible that the
associations found could reflect an underlying linkage
disequilibrium with alleles of the SLC11A1 gene at 2q35.

Vitamin D receptor (VDR). The vitamin D receptor is a
nuclear hormone receptor encoded by the VDR gene
(located at 12q12–q14). It is the mediator of the effects of
the active form of vitamin D, 1a 25(OH)2D3, which acts
as a hormone. VDR contains several domains including a
DNA-binding domain (DBD) consisting of two zinc
fingers and a ligand-binding domain. On ligand
binding, VDR is translocated to the nucleus and a
conformational change occurs, allowing interaction with
various coactivators. The DBD binds specifically to
vitamin D response elements (VDRE) in the regulatory
region of vitamin D responsive genes. A stable protein–
DNA complex requires a homo- or hetero-dimeric
complex with a second partner receptor such as the
retinoid X receptor (RXR). This complex of nuclear
receptors, vitamin D and coactivators can then
act to modulate transcriptional activities. Genes with
VDRE in their promoters include oestocalcin, hence the
association of VDR polymorphisms with vitamin D
resistant rickets, bone density and height in some
studies.136–138

In addition to its role in calcium metabolism regula-
tion, 1a 25(OH)2 D3, acting through VDR, is a potent
immunomodulator involved especially in suppression of
inflammation. Some of its immunomodulatory effects
may be mediated via VDRE; however, it appears that
other complex cross-talk interactions are also involved.
Recently, it has been shown that the DBD of VDR
interacts with Stat1, the nuclear transcription factor of
IFN-g.139 In addition to antagonizing the transcriptional
activation of a specific VDRE-containing gene by
preventing interaction between VDR and RXR, this
interaction is proposed to prolong Stat1-mediated induc-
tion of IFN-g-regulated genes in macrophages by
protecting Stat1 from inactivation by tyrosine depho-
sphorylation.

Several cytokine genes including IL2,140 GM-CSF141

and IFN-g142 are direct targets of 1a 25(OH)2 D3/VDR-
mediated repression in activated T-cells. VDR/RXR also
represses IL12 p40 expression in activated macrophages
and dendritic cells.143 IL12 is important in the develop-
ment of a Th1 response and initiation of a cell-mediated
response to pathogens. Through VDR, 1a 25(OH)2 D3
inhibits fasL (CD95) mRNA production.144 FasL mediates

activation-induced programmed cell death in activated T
lymphocytes, but it also induces maturation of dendritic
cells, resulting in upregulation of MHC class II molecule
expression and secretion of proinflammatory cyto-
kines.145 Thus through its receptor, the hormone 1a
25(OH)2 D3 has pleiotropic anti-inflammatory effects that
may inhibit the development of a protective Th1
response.

Several polymorphisms have been described in the
VDR gene, including three neighboring RFLPs: BsmI and
ApaI, located in intron 8, and a silent T to C polymorph-
ism in codon 352 that creates a Taq1 RFLP in exon 9. Exon
9 encodes part of the ligand-binding domain of VDR. The
polymorphisms are designated Aa (ApaI), Bb (BsmI) and
Tt (TaqI), where the uppercase letter signifies absence of
the restriction site and lowercase signifies the presence of
the restriction site. The AA and BB genotypes have been
associated with increased serum osteocalcin levels.146 The
B and t RFLPs were in strong linkage disequilibrium in
Australian Caucasians, and the BB genotype correlated
with bone mineral density in the same population.136 In a
luciferase reporter gene assay, haplotypes bearing BAt
produced more activity than those bearing baT,[(136]
although the functional significance of these variants, if
any, is unclear.147,148

Nevertheless, linkage analysis identified VDR as a
positional candidate for inflammatory bowel disease and
the tt genotype was subsequently found to be associated
with Crohn’s disease in Caucasians.149 In Bengali Indians,
the tt genotype was associated with the more resistant
form of leprosy, while TT was associated
with lepromatous leprosy.128 Likewise, in The Gambia,
tt was found to be associated with resistance to
tuberculosis.150 Consistent with these findings, both 1a
25(OH)2D3 deficiency and the combination of the
presence of a T allele and 1a 25(OH)2D3 deficiency were
associated with tuberculosis susceptibility in Gujarati
Indians living in London.151 In contrast, susceptibility to
pulmonary disease caused by infection with the oppor-
tunist M. malmonese was associated with increased
frequencies of the t allele, the A allele and the At
haplotype152 and in Southern Indian females the tt
genotype was associated with susceptibility to pulmon-
ary tuberculosis.153

These opposing results are difficult to resolve if the
silent Taq1 polymorphism does have a direct impact on
the immunomodulatory function of VDR; therefore, it
seems more likely that other polymorphisms (or combi-
nations thereof) in linkage disequilibrium with the Taq1
RFLP may account for the associations with mycobacter-
ial resistance and susceptibility described above. Ethnic
differences in the linkage disequilibrium of some VDR
polymorphisms have been described.154 In addition to
polymorphisms in the 30UTR, an RFLP that results in
structurally and functionally distinct VDR isoforms
occurs in the first ATG start codon of VDR. This T to C
substitution abolishes a FokI restriction site, resulting in
translation initiation at an in-frame start site three codons
downstream. Allele designation follows that for the 30

RFLPs; the f allele encodes 427 amino acids while the F
allele encodes 424 amino acids. The F allele product
interacts more efficiently with the human basal
transcription factor IIB (TFIIB) and exhibits enhanced
transcriptional activity.155 In addition, this allele is
associated with increased bone mineral density
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whereas the f allele may be associated with protection
against pulmonary disease caused by M. malonese.152

As yet no studies investigating association between
the FokI RFLP and leprosy susceptibility have been
reported.

Toll-like receptor 2 (TLR2). Toll-like receptors (TLRs) are
pattern recognition receptors able to activate direct
antimicrobial effector mechanisms in response to various
microbial components. Also, activation of mammalian
TLRs facilitates transcription of genes that regulate the
adaptive response, including cytokines and co-stimula-
tory molecules. TLR2 is able to respond to many
microbial components, including mycobacterial lipopro-
teins and lipoarabinomannan156,157 and appears to be
very important in generating a pro-inflammatory, pro-
tective immune response against mycobacteria in
mice.158 In both mice and humans, TLR2 activation by
M. tuberculosis lipoprotein leads to killing of intra-
cellular M. tuberculosis. Killing is nitric oxide (NO)
dependant in mice, but in humans this process is NO
independent.159 Recently, 86 Korean leprosy patients
were screened for polymorphisms in a highly conserved
part of the TLR2 intracellular domain. A previously
undescribed C to T substitution that results in an
arginine to tryptophan change at the highly con-
served amino acid 677 was found in 22% of the
45 lepromatous leprosy patients.160 No other poly-
morphisms were found in the region and it was
hypothesized that the substitution may affect the
intracellular signaling of TLR2. Another polymorphism
of a conserved C-terminal arginine in TLR2 reduces
NF kappa B activation in response to Gram-
positive bacterial peptides and may be associated
with susceptibility to staphylococcal infection,161

consistent with the hypothesis that TLR2 has an
important role in the protection against bacterial infec-
tions in humans.

Mannose-binding lectin (protein C) 2 (MBL2) . Located at
10q11.2–q21, MBL2 encodes a calcium-dependant man-
nose-binding lectin (MBL, also called mannose-binding
protein (MBP)) found in serum. MBL binds to arrays of
terminal mannose groups on a variety of bacteria.
Binding can initiate complement activation, and promote
opsonophagocytosis independent of antibodies and Clq.
Any one of three exon 1 point mutations (in codons 52, 54
and 57) in MBL2 reduces MBL serum concentrations,
probably by interfering with the oligomerization of the
protein. Low levels of MBL may be associated with
recurrent infections in young children, yet low produ-
cing alleles are found with reasonable frequency in all
populations, leading to the hypothesis that the disad-
vantage of increased infection susceptibility in infancy
may be counterbalanced by unknown advantages of low
MBL concentration.162 As mycobacteria utilize phagocy-
tosis to gain entry into host cells, it has been hypothe-
sized that low MBL levels may be protective against
mycobacterial infection by limiting this entry route.163 In
agreement with this hypothesis, increased MBL levels
have been observed in active and fully recovered South
African Cape Coloured tuberculosis patients,164 Tanza-
nian tuberculosis patients165 and in a small number of
Ethiopian leprosy patients.163 Exon 1 variants underlying
serum MBL deficiency were found less commonly in

Cape Coloured meningeal tuberculosis,164 but not in
Gambian pulmonary tuberculosis patients.166 Intrigu-
ingly, it appears that pathogenic mycobacteria may
encourage opsonization by production of a molecule
that interacts with C2a to form a C3 convertase that
results in deposition of C3b on the bacterial wall.167

However, no associations have been reported between
leprosy susceptibility and MBL2 variants, and in contra-
diction to the above reports, MBL2 variants were found
with increased frequency in a limited Indian pulmonary
tuberculosis study.168

Genome-wide linkage analysis

The development of high throughput genotyping tech-
nologies and the identification of thousands of poly-
morphic microsatellite markers have made genome-wide
linkage studies possible. This approach has the advan-
tage that no disease model or prior knowledge of the
structure, function or location of the disease gene is
required. The chromosomal regions identified by this
approach will initially be much larger than that of an
association study (several megabases compared to a few
hundred kilobases); however; fine mapping and subse-
quent identification of the genes involved has been aided
greatly by the release of the draft human genome
sequence. The genome-wide approach also has the
advantage that genes of unknown function and those
not previously suspected as possible candidates can be
identified.

To date, very few genome-wide linkage studies of
infection or infectious diseases have been published. The
first pathogen to be investigated in this way was
Schistosoma mansoni. The parasite burden in 11 extended
families from Brazil was examined and a region on
chromosome 5 (5q31–33) was identified.169 Further
studies of S. mansoni and malaria parasite density also
showed linkage to this region, which contains a cluster of
genes encoding several Th2 cytokines.170,171 Linkage to
this same region of chromosome 5 has also been
identified in a study of candidate regions for atopy and
asthma.172–174

Bellamy et al carried out a genome screen for
tuberculosis susceptibility loci in 136 African families
containing 173 independent affected sib pairs.125 Two
chromosomal regions showed suggestive evidence of
linkage (Xq27 and 15q11). Although the evidence of
linkage did not reach the criteria for genome-wide
statistical significance,175 further support for the
presence of the loci was obtained using the method of
common ancestry mapping. Very recently, genome-wide
linkage scans have also identified new susceptibility loci
for persistent hepatitis B virus infection (Frodsham et al,
unpublished).

Leprosy is a disease that is well suited to genome-wide
linkage studies in that it has a clear phenotype and the
disease progression is slow. The disease has a very low
mortality rate that not only enables the collection of older
family members, but also suggests that if a major
susceptibility gene does exist, it might be able to persist
in the population. Segregation studies have suggested
the presence of a major gene controlling susceptibility to
leprosy; however, the gene associations previously
detected in candidate gene studies appeared only to
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contribute a small proportion to the overall genetic
component.

Only one genome screen for leprosy susceptibility has
been published to date. A two-stage genome scan was
carried out in South India using a total of 224 families
(245 independent sib pairs) with mainly the tuberculoid
form of leprosy.176 A region of strongly significant
linkage was identified on chromosome 10p13
(Po2� 10�5). A gene that lies at the peak of this linkage
is the macrophage mannose receptor (MRC1). This
receptor mediates phagocytosis and endocytosis of
pathogens by recognition of the mannose and fucose
structures present on their surface.177 The terminal
mannosyl units of lipoarabinomannan (LAM) from the
surface of M. tuberculosis were found to be ligands for
MRC1 allowing phagocytosis of the organism.178 The
receptor also appears to have a role in the processing of
glycolipids derived from mycobacteria.179

It is therefore possible that MRC1 could also have a
role in the immune response to M. leprae infection. To
fully define the relevance of this positional candidate
gene in leprosy, an extensive analysis of numerous
variants in this gene in the South Indian families used
for the genome-wide scan is in progress (Tosh et al,
unpublished).

Although the region of linkage on chromosome 10p13
is thought to contribute substantially to the total genetic
component of leprosy susceptibility in this population, a
follow-up of markers showing weaker evidence of
linkage identified a second region of linkage on chromo-
some 20p12 (P¼ 0.00003).180 This linkage is not as strong
as that identified on chromosome 10; however, it is
interesting that this same region of chromosome 20 (p12)
has been found to determine susceptibility to atopic
dermatitis and psoriasis.172,174 These are all diseases
caused by inappropriate immune responses to an
environmental stimulus. This suggests the presence of a
gene involved in the regulation of immune responses,
although no strong positional candidates have been
identified as yet.

Even though there have been many studies showing
linkage and association of the MHC to leprosy, no strong
linkage was detected in South India, suggesting hetero-
geneity in genetic susceptibility. Furthermore, Tosh et al,
showed that the strength of the chromosome 20 linkage
differs in the two geographic regions of India studied.
Also, as the sibpairs studied were mainly paucibacillary,
it will also be interesting to see if the two regions
identified so far contain susceptibility loci for leprosy per
se or to tuberculoid leprosy.

It is encouraging that regions of linkage, reaching
genome-wide statistical significance, have been identi-
fied as it seemed possible that infectious diseases were
too polygenic to have enough power to detect linkage
using the genome-wide approach; however, further
genome-wide linkage studies in different populations
will be required to determine the extent of genetic
heterogeneity that exists for leprosy susceptibility.

Conclusions

Thus far all the genes suggested to have a role in the
susceptibility to leprosy either act to directly modulate
development of the adaptive response (HLA, MICA,

TAP2, CTLA4, VDR), or may bridge the innate and
adaptive responses (NRAMP1, TLR2, HSP70, TNFa,
MRC1). This is consistent with the idea that an appro-
priate cell-mediated response is critical in the control of
mycobacterial infection. Many of the associations, have
only been found in a small series of patients, or in a
single population (Table 1), and should be repeated in
larger studies. Lack of correlation in results between
populations should not necessarily be regarded as a
negation of initial associations but may instead reflect
heterogeneity in the genetic susceptibility to this enig-
matic disease.
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