Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

IFNs activate toll-like receptor gene expression in viral infections

Abstract

Toll-like receptors (TLRs) mediate innate immune responses to microbes. TLR2, TLR5, TLR6, and TLR9 have been implicated in responses to bacterial components, and TLR4 is the receptor for Gram-negative bacteria. Recently, TLR4 was described to function in respiratory syncytial virus-induced NF-κB activation. Here we have analyzed TLR1–9 mRNA expression in human primary macrophages infected with influenza A and Sendai viruses. TLR1, TLR2, TLR4, TLR6, and TLR8 mRNAs were expressed at basal levels in macrophages. Viral infection enhanced TLR1, TLR2, TLR3, and TLR7 mRNA expression, and neutralizing anti-IFN-α/β antibodies downregulated gene expression of these TLRs. Exogenously added IFN-α upregulated TLR1, TLR2, TLR3, and TLR7 mRNA expression in macrophages, as well as TLR3 mRNA expression in epithelial and endothelial cell lines. IFN-γ enhanced the expression of TLR1 and TLR2 mRNA in macrophages, and TLR3 in epithelial and endothelial cells. The data suggests a novel role for IFNs in the activation of innate immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Medzhitov R, Janeway C Jr Innate immunity N Engl J Med 2000 343 338–344

    Article  CAS  Google Scholar 

  2. Takeuchi O, Hoshino K, Kawai T et al Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components Immunity 1999 11 443–451

    Article  CAS  Google Scholar 

  3. Ozinsky A, Underhill DM, Fontenot JD et al The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors Proc Natl Acad Sci 2000 97 13766–13771

    Article  CAS  Google Scholar 

  4. Hajjar AM, O’Mahony DS, Ozinsky A et al Functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin J Immunol 2001 166 15–19

    Article  CAS  Google Scholar 

  5. Hayashi F, Smith KD, Ozinsky A et al The innate immune response to bacterial flagellin is mediated by toll-like receptor 5 Nature 2001 410 1099–1103

    Article  CAS  Google Scholar 

  6. Hemmi H, Takeuchi O, Kawai T et al A toll-like receptor recognizes bacterial DNA Nature 2000 408 740–745

    Article  CAS  Google Scholar 

  7. Poltorak A, He X, Smirnova I et al Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene Science 1998 282 2085–2088

    Article  CAS  Google Scholar 

  8. Hoshino K, Takeuchi O, Kawai T et al Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product J Immunol 1999 162 3749–3752

    CAS  PubMed  Google Scholar 

  9. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction J Biol Chem 1999 274 10689–10692

    Article  CAS  Google Scholar 

  10. Kurt-Jones EA, Popova L, Kwinn L et al Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus Nat Immunol 2000 5 398–401

    Article  Google Scholar 

  11. Robinson D, Shibuya K, Mui A et al IGIF does not drive Th1 development but synergizes with IL-12 for interferon-gamma production and activates IRAK and NFkappaB Immunity 1997 7 571–581

    Article  CAS  Google Scholar 

  12. Muzio M, Ni J, Feng P, Dixit VM IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling Science 1997 278 1612–1615

    Article  CAS  Google Scholar 

  13. Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z MyD88: an adapter that recruits IRAK to the IL-1 receptor complex Immunity 1997 7 837–847

    Article  CAS  Google Scholar 

  14. Medzhitov R, Preston-Hurlburt P, Kopp E et al MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways Mol Cell Biol 1998 2 253–258

    CAS  Google Scholar 

  15. Burns K, Martinon F, Esslinger C et al MyD88, an adapter protein involved in interleukin-1 signaling J Biol Chem 1998 273 12203–12209

    Article  CAS  Google Scholar 

  16. Thomassen E, Bird TA, Renshaw BR, Kennedy MK, Sims JE Binding of interleukin-18 to the interleukin-1 receptor homologous receptor IL-1Rrp1 leads to activation of signaling pathways similar to those used by interleukin-1 J Interferon Cytokine Res 1998 12 1077–1088

    Article  Google Scholar 

  17. Adachi O, Kawai T, Takeda K et al Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function Immunity 1998 9 143–150

    Article  CAS  Google Scholar 

  18. Kanakaraj P, Ngo K, Wu Y et al Defective interleukin (IL)-18-mediated natural killer and T helper cell type 1 responses in IL-1 receptor-associated kinase (IRAK)-deficient mice J Exp Med 1999 189 1129–1138

    Article  CAS  Google Scholar 

  19. Medzhitov R, Preston-Hurlburt P, Janeway C A human homologue of the Drosophila toll protein signals activation of adaptive immunity Nature 1997 388 394–397

    Article  CAS  Google Scholar 

  20. Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan FJ A family of human receptors structurally related to Drosophila Toll Proc Natl Acad Sci USA 1998 95 588–593

    Article  CAS  Google Scholar 

  21. Chaudhary PM, Ferguson C, Nguyen V et al Cloning and characterization of two toll/interleukin-1 receptor-like genes TIL3 and TIL4: evidence for a multi-gene receptor family in humans Blood 1998 91 4020–4027

    CAS  PubMed  Google Scholar 

  22. Muzio M, Natoli G, Saccani S, Levrero M, Mantovani A The human toll signaling pathway: divergence of nuclear factor κB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6) J Exp Med 1998 187 2097–2101

    Article  CAS  Google Scholar 

  23. Zhang FX, Kirschning CJ, Mancinelli R et al Bacterial lipopolysaccharide activates nuclear factor-κB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes J Biol Chem 1999 274 7611–7614

    Article  CAS  Google Scholar 

  24. Pirhonen J, Sareneva T, Kurimoto M, Julkunen I, Matikainen S Virus infection activates IL-1β and IL-18 production in human macrophages by a caspase-1-dependent pathway J Immunol 1999 162 7322–7329

    CAS  PubMed  Google Scholar 

  25. Matikainen S, Pirhonen J, Miettinen M et al Influenza A and Sendai viruses induce differential chemokine gene expression and transcription factor activation in human macrophages Virology 2000 276 138–147

    Article  CAS  Google Scholar 

  26. Ronni T, Matikainen S, Sareneva T et al Regulation of IFN-α/β, MxA, 2′, 5′-oligoandenylate synthetase, and HLA gene expression in influenza A-infected human lung epithelial cells J Immunol 1997 158 2363–2374

    CAS  PubMed  Google Scholar 

  27. Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D Recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via toll-like receptor 2 J Immunol 1999 163 1–5

    CAS  PubMed  Google Scholar 

  28. Schwandner R, Dziarski R, Wesche H, Rothe M, Kirscning CJ Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2 J Biol Chem 1999 274 17406–17409

    Article  CAS  Google Scholar 

  29. Underhill DM, Ozinsky A, Hajjar AM et al The toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens Nature 1999 401 811–815

    Article  CAS  Google Scholar 

  30. Brightbill HD, Libarty DH, Krutzik SR et al Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors Science 1999 285 732–739

    Article  CAS  Google Scholar 

  31. Means TK, Wang S, Lien E, Yoshimura A, Golenbock DT, Fenton MJ Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis J Immunol 1999 163 3920–3927

    CAS  PubMed  Google Scholar 

  32. Underhill DM, Ozinsky A, Smith KD, Aderem A Toll-like receptor 2 mediates mycobacteria-induced proinflammatory signaling in macrophages Proc Natl Acad Sci 1999 25 14459–14463

    Article  Google Scholar 

  33. Lien E, Sellati TJ, Yoshimura A et al Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products J Biol Chem 1999 247 33419–33425

    Article  Google Scholar 

  34. Hirschfeld M, Kirschning CJ, Schwandner R et al Inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by toll-like receptor 2 J Immunol 1999 163 2382–2386

    CAS  PubMed  Google Scholar 

  35. Lien E, Means TK, Heine H et al Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide J Clin Invest 2000 105 497–504

    Article  CAS  Google Scholar 

  36. Poltorak A, Ricciardi-Castagnoli P, Citterio S, Beutler B Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation Proc Natl Acad Sci 2000 97 2163–2167

    Article  CAS  Google Scholar 

  37. Kirschning CJ, Wesche H, Ayres TM, Rothe M Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide J Exp Med 1998 188 2091–2097

    Article  CAS  Google Scholar 

  38. Hirschfeld M, Kirschning CJ, Schwandner R et al Inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by toll-like receptor 2 J Immunol 1999 163 2382–2386

    CAS  PubMed  Google Scholar 

  39. Sareneva T, Matikainen S, Kurimoto M, Julkunen I Influenza A virus-induced IFN-α/β and IL-18 synergistically enhance IFN-γ gene expression in human T cells J Immunol 1998 160 6032–6038

    CAS  PubMed  Google Scholar 

  40. Matsuguchi T, Musikacharoen T, Ogawa T, Yoshikai Y Gene expressions of toll-like receptor 2, but not toll-like receptor 4, is induced by LPS and inflammatory cytokines in mouse macrophages J Immunol 2000 165 5767–5772

    Article  CAS  Google Scholar 

  41. Musikacharoen T, Matsuguchi T, Kikuchi T, Yoshikai Y NF-κB and STAT5 play important roles in the regulation of mouse toll-like receptor 2 gene expression J Immunol 2001 166 4516–4524

    Article  CAS  Google Scholar 

  42. Faure E, Equils O, Sieling PA et al Bacterial lipopolysaccharide activates NF-κB through toll-like receptor (TLR4) in cultured human dermal endothelial cells J Biol Chem 2000 275 11058–11063

    Article  CAS  Google Scholar 

  43. Rehli M, Poltorak A, Schwarzfischer L, Krause SW, Andreesen R, Beutler B PU.1 and interferon consensus sequence-binding protein regulate the myeloid expression of the human toll-like receptor 4 gene J Biol Chem 2000 275 9773–9781

    Article  CAS  Google Scholar 

  44. Beutler B, Tkacenko V, Milsark I, Krochin N, Cerami A Effect of gamma interferon on cachectin expression by mononuclear phagocytes. Reversal of the lpsd (endotoxin resistance) phenotype J Exp Med 1986 164 1791–1796

    Article  CAS  Google Scholar 

  45. Yang R-B, Mark MR, Gray A et al Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signaling Nature 1998 395 284–288

    Article  CAS  Google Scholar 

  46. Muzio M, Bosisio D, Polentarutti N et al Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells J Immunol 2000 164 5998–6004

    Article  CAS  Google Scholar 

  47. Sareneva T, Julkunen I, Matikainen S IFN-α and IL-12 induce IL-18 receptor gene expression in human NK and T cells J Immunol 2000 165 1933–1938

    Article  CAS  Google Scholar 

  48. Harroch S, Gothelf Y, Revel M, Chebath J 5′upstream sequences of MyD88, an IL-6 primary response gene in M1 cells: detection of functional IRF-1 and Stat factor binding sites Nucleic Acids Res 1995 23 3539–3546

    Article  CAS  Google Scholar 

  49. WHO Collaborating Centers for Reference and Research of Influenza Concepts and Procedures for Laboratory-Based Influenza Surveillance. U.S. Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA 1982

  50. Cantell K, Hirvonen S Preparation and assay of Sendai virus Methods Enzymol 1981 78 299–301

    Article  CAS  Google Scholar 

  51. Miettinen M, Lehtonen A, Julkunen I, Matikainen S Lactobacilli and streptococci activate NF-κB and STAT signaling pathways in human macrophages J Immunol 2000 164 3733–3740

    Article  CAS  Google Scholar 

  52. Mogensen KE, Pyhälä R, Cantell K Raising antibodies to human leukocyte interferon Acta Pathol Microbiol Scand 1975 83 443–450

    CAS  Google Scholar 

  53. Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease Biochemistry 1979 18 5294–5299

    Article  CAS  Google Scholar 

  54. Glisin V, Crkvenjakov R, Buys C Ribonucleic acid isolated by cesium chloride centrifugation Biochemistry 1974 13 2633–2637

    Article  CAS  Google Scholar 

  55. Miettinen M, Matikainen S, Vuopio-Varkila J et al Lactobacilli and streptococci induce interleukin-12 (IL-12), IL-18, and gamma interferon production in human peripheral blood mononuclear cells Infect Immun 1998 66 6058–6062

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Takeuchi T, Kawai T, Sanjo H et al TLR6: a novel member of an expanding toll-like receptor family Gene 1999 231 59–65

    Article  CAS  Google Scholar 

  57. Cantell K, Hirvonen S, Kauppinen M-L, Kalkkinen N Rapid production of IFN-γ in uninduced human leukocyte suspensions J Interferon Res 1991 11 231–236

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mari Aaltonen, Valma Mäkinen, Teija Westerlund, and Marika Yliselä for technical assistance. Drs Osamu Takeuchi and Shizuo Akira are thanked for providing the full-length TLR6 cDNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Miettinen.

Additional information

This work was supported by the Maud Kuistila Foundation, University of Helsinki 350th Anniversary Fund, the Medical Research Council of the Academy of Finland, the Sigrud Juselius Foundation, the Jenny and Antti Wihuri Foundation, and the Finnish Cancer Foundations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miettinen, M., Sareneva, T., Julkunen, I. et al. IFNs activate toll-like receptor gene expression in viral infections . Genes Immun 2, 349–355 (2001). https://doi.org/10.1038/sj.gene.6363791

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6363791

Keywords

This article is cited by

Search

Quick links