Organic materials are potential substitutes for the costly transition-metal oxides used in battery electrodes, but their stability is often poor. A polymer design that uses intermolecular interactions solves this problem.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout

Notes
References
Kolek, M. et al. Energ. Environ. Sci. http://dx.doi.org/10.1039/c7ee01473b (2017).
Armand, M. & Tarascon, J.-M. Nature 451, 652–657 (2008).
Muenzel, V., de Hoog, J., Brazil, M., Vishwanath, A. & Kalyanaraman, S. Proc. 2015 ACM 6th Int. Conf. Future Energy Systems 57–66 (ACM, 2015).
Grunditz, E. A. & Thiringer, T. IEEE Trans. Transportation Electrification 2, 270–289 (2016).
Nitta, N., Wu, F., Lee, J. T. & Yushin, G. Mater. Today 18, 252–264 (2015).
Zhu, Z. & Chen, J. J. Electrochem. Soc. 162, A2393–A2405 (2015).
Xie, J. & Zhang, Q. J. Mater. Chem. A 4, 7091–7106 (2016).
Novák, P., Müller, K., Santhanam, K. S. V. & Haas, O. Chem. Rev. 97, 207–282 (1997).
Muench, S. et al. Chem. Rev. 116, 9438–9484 (2016).
Etacheri, V., Marom, R., Elazari, R., Salitra, G. & Aurbach, D. Energ. Environ. Sci. 4, 3243–3262 (2011).
Morishima, Y., Akihara, I. & Nozakura, S.-I. J. Polym. Sci. C 23, 651–653 (1985).
Tukamoto, H. & West, A. R. J. Electrochem. Soc. 144, 3164–3168 (1997).
Author information
Authors and Affiliations
Corresponding author
Related links
Rights and permissions
About this article
Cite this article
Lee, B., Kang, K. Long-lived electrodes for plastic batteries. Nature 549, 339–340 (2017). https://doi.org/10.1038/549339a
Published:
Issue Date:
DOI: https://doi.org/10.1038/549339a