Organic materials are potential substitutes for the costly transition-metal oxides used in battery electrodes, but their stability is often poor. A polymer design that uses intermolecular interactions solves this problem.
This is a preview of subscription content, access via your institution
Access options
Subscribe to Nature+
Get immediate online access to Nature and 55 other Nature journal
$29.99
monthly
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.

Notes
References
Kolek, M. et al. Energ. Environ. Sci. http://dx.doi.org/10.1039/c7ee01473b (2017).
Armand, M. & Tarascon, J.-M. Nature 451, 652–657 (2008).
Muenzel, V., de Hoog, J., Brazil, M., Vishwanath, A. & Kalyanaraman, S. Proc. 2015 ACM 6th Int. Conf. Future Energy Systems 57–66 (ACM, 2015).
Grunditz, E. A. & Thiringer, T. IEEE Trans. Transportation Electrification 2, 270–289 (2016).
Nitta, N., Wu, F., Lee, J. T. & Yushin, G. Mater. Today 18, 252–264 (2015).
Zhu, Z. & Chen, J. J. Electrochem. Soc. 162, A2393–A2405 (2015).
Xie, J. & Zhang, Q. J. Mater. Chem. A 4, 7091–7106 (2016).
Novák, P., Müller, K., Santhanam, K. S. V. & Haas, O. Chem. Rev. 97, 207–282 (1997).
Muench, S. et al. Chem. Rev. 116, 9438–9484 (2016).
Etacheri, V., Marom, R., Elazari, R., Salitra, G. & Aurbach, D. Energ. Environ. Sci. 4, 3243–3262 (2011).
Morishima, Y., Akihara, I. & Nozakura, S.-I. J. Polym. Sci. C 23, 651–653 (1985).
Tukamoto, H. & West, A. R. J. Electrochem. Soc. 144, 3164–3168 (1997).
Author information
Authors and Affiliations
Corresponding author
Related links
Rights and permissions
About this article
Cite this article
Lee, B., Kang, K. Long-lived electrodes for plastic batteries. Nature 549, 339–340 (2017). https://doi.org/10.1038/549339a
Published:
Issue Date:
DOI: https://doi.org/10.1038/549339a