Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Future opportunities for the diagnosis and treatment of prostate cancer

Abstract

Despite recent advances, current diagnostic tests and treatment of prostate cancer have limitations. In the last few years, numerous biomolecules have been investigated with the aim of improving diagnosis, including kallikrein-like proteases, growth factors and neuroendocrine markers. Analysis of susceptibility genes has also been a focus of attention. Extensive research into new therapeutic approaches is also underway, including targeting angiogenesis, immune regulation and stromal–epithelial interactions. Gene therapy, gene chip technology and proteomics have emerged as promising innovations. The host of novel diagnostic markers and therapies require appropriate validation, both phenotypical and functional. A further consideration is the need to re-evaluate clinical trial design and end points to facilitate progression of promising targets through the clinical trial process. Overall, the outlook for the treatment of prostate cancer looks promising, with any advances likely to require both a multimodal and multidisciplinary approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Huggins C, Hodges C . Studies on prostatic cancer. 1. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res 1941; 1: 293–297.

    CAS  Google Scholar 

  2. Aus G et al. EAU guidelines on prostate cancer. Eur Urol 2001; 40: 97–101.

    Article  CAS  PubMed  Google Scholar 

  3. Thompson I, Leach RJ, Pollock BH, Naylor SL . Prostate cancer and prostate-specific antigen: the more we know, the less we understand. J Natl Cancer Inst 2003; 95: 1027–1028.

    Article  PubMed  Google Scholar 

  4. Cramer SD et al. Association between genetic polymorphisms in the prostate-specific antigen gene promoter and serum prostate-specific antigen levels. J Natl Cancer Inst 2003; 95: 1044–1053.

    Article  CAS  PubMed  Google Scholar 

  5. Galic J et al. Comparison of digital rectal examination and prostate specific antigen in early detection of prostate cancer. Coll Antropol 2003; 27 (Suppl 1): 61–66.

    PubMed  Google Scholar 

  6. Gleason DF, Mellinger GT . Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol 1974; 111: 58–64.

    Article  CAS  PubMed  Google Scholar 

  7. DeMarzo AM, Nelson WG, Isaacs WB, Epstein JI . Pathological and molecular aspects of prostate cancer. Lancet 2003; 361: 955–964.

    Article  CAS  PubMed  Google Scholar 

  8. Allsbrook Jr WC et al. Interobserver reproducibility of Gleason grading of prostatic carcinoma: urologic pathologists. Hum Pathol 2001; 32: 74–80.

    Article  PubMed  Google Scholar 

  9. Allsbrook Jr WC et al. Interobserver reproducibility of Gleason grading of prostatic carcinoma: general pathologist. Hum Pathol 2001; 32: 81–88.

    Article  PubMed  Google Scholar 

  10. Corcoran NM, Costello AJ . Interleukin-6: minor player or starring role in the development of hormone-refractory prostate cancer? BJU Int 2003; 91: 545–553.

    Article  CAS  PubMed  Google Scholar 

  11. Bello-DeOcampo D, Tindall DJ . TGF-betal/Smad signaling in prostate cancer. Curr Drug Targets 2003; 4: 197–207.

    Article  CAS  PubMed  Google Scholar 

  12. Wikstrom P et al. Transforming growth factor beta1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. Prostate 1998; 37: 19–29.

    Article  CAS  PubMed  Google Scholar 

  13. Tavtigian SV et al. A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet 2001; 27: 172–180.

    Article  CAS  PubMed  Google Scholar 

  14. Korver W et al. The product of the candidate prostate cancer susceptibility gene ELAC2 interacts with the gamma-tubulin complex. Int J Cancer 2003; 104: 283–288.

    Article  CAS  PubMed  Google Scholar 

  15. De Marzo AM, Marchi VL, Epstein JI, Nelson WG . Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol 1999; 155: 1985–1992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thompson D, Easton DF . Cancer incidence in BRCA1 mutation carriers. J Natl Cancer Inst 2002; 94: 1358–1365.

    Article  CAS  PubMed  Google Scholar 

  17. The Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst 1999; 91: 1310–1316.

  18. Schalken JA, Hessels D, Verhaegh G . New targets for therapy in prostate cancer: differential display code 3 (DD3(PCA3)), a highly prostate cancer-specific gene. Urology 2003; 62 (5 Suppl 1): 34–43.

    Article  PubMed  Google Scholar 

  19. Fradet Y et al. uPM3, a new molecular urine test for the detection of prostate cancer. Urology 2004; in press.

  20. Watson RW . Gene-chip technology and prostate cancer: the identification of new genes regulating tumour progression. BJU Int 2003; 91: 307.

    Article  CAS  PubMed  Google Scholar 

  21. Ahram M et al. Proteomic analysis of human prostate cancer. Mol Carcinogen 2002; 33: 9–15.

    Article  CAS  Google Scholar 

  22. Chakrabarti R, Robles LD, Gibson J, Muroski M . Profiling of differential expression of messenger RNA in normal, benign, and metastatic prostate cell lines. Cancer Genet Cytogenet 2002; 139: 115–125.

    Article  CAS  PubMed  Google Scholar 

  23. Luo J et al. Alpha-methylacyl-CoA racemase: a new molecular marker for prostate cancer. Cancer Res 2002; 62: 2220–2226.

    CAS  PubMed  Google Scholar 

  24. Varambally S et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419: 624–629.

    Article  CAS  PubMed  Google Scholar 

  25. Petricoin III EF et al. Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst 2002; 94: 1576–1578.

    Article  CAS  PubMed  Google Scholar 

  26. Schalken JA, van Leenders G . Cellular and molecular biology of the prostate: stem cell biology. Urology 2003; 62 (5 Suppl 1): 11–20.

    Article  PubMed  Google Scholar 

  27. Nicholson B, Theodorescu D . Molecular therapeutics in prostate cancer. Histol Histopathol 2003; 18: 275–298.

    CAS  PubMed  Google Scholar 

  28. Hudes GR . Signaling inhibitors in the treatment of prostate cancer. Invest New Drugs 2002; 20: 159–172.

    Article  CAS  PubMed  Google Scholar 

  29. Steiner MS, Gingrich JR, Chauhan RD . Prostate cancer gene therapy. Surg Oncol Clin N Am 2002; 11: 607–620.

    Article  PubMed  Google Scholar 

  30. Chung LW et al. New targets for therapy in prostate cancer: modulation of stromal–epithelial interactions. Urology 2003; 62 (5 Suppl 1): 44–54.

    Article  PubMed  Google Scholar 

  31. Umbas R et al. Decreased E-cadherin expression is associated with poor prognosis in patients with prostate cancer. Cancer Res 1994; 54: 3929–3933.

    CAS  PubMed  Google Scholar 

  32. Tomita K . Cell Adhesion Molecules in Bladder and Prostate Cancer. University of Nijmegen: Nijmegen, 2004.

    Google Scholar 

  33. Cavallaro U, Schaffhauser B, Christofori G . Cadherins and the tumour progression: is it all in a switch? Cancer Lett 2002; 176: 123–128.

    Article  CAS  PubMed  Google Scholar 

  34. Borgstrom P et al. Neutralizing anti-vascular endothelial growth factor antibody completely inhibits angiogenesis and growth of human prostate carcinoma micro tumors in vivo. Prostate 1998; 35: 1–10.

    Article  CAS  PubMed  Google Scholar 

  35. Kumar CC . Integrin alpha v beta 3 as a therapeutic target for blocking tumor-induced angiogenesis. Curr Drug Targets 2003; 4: 123–131.

    Article  CAS  PubMed  Google Scholar 

  36. Brooks PC et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994; 79: 1157–1164.

    Article  CAS  PubMed  Google Scholar 

  37. Horig H, Lee CS, Kaufman HL . Prostate-specific antigen vaccines for prostate cancer. Expert Opin Biol Ther 2002; 2: 395–408.

    Article  CAS  PubMed  Google Scholar 

  38. Nanus DM et al. Clinical use of monoclonal antibody HuJ591 therapy: Targeting prostate specific membrane antigen. J Urol 2003; 170: S84–S89.

    Article  PubMed  Google Scholar 

  39. Morris MJ, Scher HI . Novel therapies for the treatment of prostate cancer: current clinical trials and development strategies. Surg Oncol 2002; 11: 13–23.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R W G Watson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, R., Schalken, J. Future opportunities for the diagnosis and treatment of prostate cancer. Prostate Cancer Prostatic Dis 7 (Suppl 1), S8–S13 (2004). https://doi.org/10.1038/sj.pcan.4500742

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.pcan.4500742

Keywords

This article is cited by

Search

Quick links