Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Molecular biology of prostate cancer

Abstract

Development of any cancer reflects a progressive accumulation of alterations in various genes. Oncogenes, tumour suppressor genes, DNA repair genes and metastasis suppressor genes have been investigated in prostate cancer. Here, we review current understanding of the molecular biology of prostate cancer. Detailed understanding of the molecular basis of prostate cancer will provide insights into the aetiology and prognosis of the disease, and suggest avenues for therapeutic intervention in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rous FP . Transmission of a malignant growth by means of a cell free filtrate. JAMA 1911; 56: 198.

    Google Scholar 

  2. Rous FP . A sarcoma of the fowl transmissible by an agent separable from the tumour cells. J Exp Med 1911; 13: 397–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baltimore D . RNA-dependent DNA polymerase in virons of RNA tumour viruses. Nature 1970; 226: 1209.

    Article  CAS  PubMed  Google Scholar 

  4. Martin GS . Rous sarcoma virus: a function required for the maintenance of the transformed state. Nature 1970; 227: 1021.

    Article  CAS  PubMed  Google Scholar 

  5. Huebner RJ, Todaro GJ . Oncogenes of RNA tumour viruses as determinants of cancer. Proc Natl Acad Sci USA 1969; 64: 1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weinberg RA . Oncogenes, antioncogenes and the molecular bases of multistep carcinogenesis. Cancer Res 1989; 49: 3713–3721.

    CAS  PubMed  Google Scholar 

  7. Nwosu V, Carpten J, Trent JM, Sheridan R . Heterogeneity of genetic alterations in prostate cancer: evidence of the complex nature of the disease. Hum Mol Genet 2001; 10: 2313–2318.

    Article  CAS  PubMed  Google Scholar 

  8. Lander ES et al. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860–921.

    Article  CAS  PubMed  Google Scholar 

  9. http://gai.nci.nih.gov/.

  10. http://snp.cshl.org/.

  11. http://www.genome.gov/page.cfm?pageID=10001688.

  12. Varambally S et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419: 624–629.

    Article  CAS  PubMed  Google Scholar 

  13. Davies H et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.

    Article  CAS  PubMed  Google Scholar 

  14. Cowan WM, Kopnisky KL, Hyman SE . The human genome project and its impact on psychiatry. Annu Rev Neurosci 2002; 25: 1–50.

    Article  CAS  PubMed  Google Scholar 

  15. Peehl DM . Oncogenes in prostate cancer: an update. Cancer 1993; 71: 1159–1164.

    Article  CAS  PubMed  Google Scholar 

  16. Varmus H . A historical review of oncogenes. In: Wienberg RA (ed). Oncogenes and the Molecular Origins of Cancer. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York 1989; pp 3–44.

    Google Scholar 

  17. Torry DS, Cooper GM . Proto-oncogenes in development and cancer. Am J Reprod Immunol (Copenhagen) 1991; 25: 129–132.

    Article  CAS  Google Scholar 

  18. Bos JL . The ras gene family and human carcinogenesis. Mutat Res 1988; 195: 255–271.

    Article  CAS  PubMed  Google Scholar 

  19. Bos JL . RAS oncogenes in human cancer: a review. Cancer Res 1989; 49: 4682–4689.

    CAS  PubMed  Google Scholar 

  20. Miyakura Y et al. Concurrent mutations of K-ras oncogene at codons 12 and 22 in colon cancer. Jpn J Clin Oncol 2002; 32: 219–221.

    Article  PubMed  Google Scholar 

  21. Westermann F, Schwab M . Genetic parameters of neuroblastomas. Cancer Lett 2002; 184: 127–147.

    Article  CAS  PubMed  Google Scholar 

  22. Funkhouser WK, Kaiser-Rogers K . Review: significance of, and optimal screening for, HER-2 gene amplification and protein overexpression in breast carcinoma. Ann Clin Lab Sci 2001; 31: 349–358.

    CAS  PubMed  Google Scholar 

  23. Kaptain S, Tan LK, Chen B . Her-2/neu and breast cancer. Diagn Mol Pathol 2001; 10: 139–152.

    Article  CAS  PubMed  Google Scholar 

  24. Ye BH et al. Chromosomal translocations cause deregulated BCL6 expression by promoter substitution in B cell lymphoma. EMBO J 1995; 14: 6209–6217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Perez-Losada J, Gutierrez-Cianca N, Sanchez-Garcia I . Philadelphia-positive B-cell acute lymphoblastic leukemia is initiated in an uncommitted progenitor cell. Leukemia Lymphoma 2001; 42: 569–576.

    Article  CAS  PubMed  Google Scholar 

  26. Johansson B, Fioretos T, Mitelman F . Cytogenetic and molecular genetic evolution of chronic myeloid leukemia. Acta Haematol 2002; 107: 76–94.

    Article  CAS  PubMed  Google Scholar 

  27. Advani AS, Pendergast AM . Bcr-Abl variants: biological and clinical aspects. Leuk Res 2002; 26: 713–720.

    Article  CAS  PubMed  Google Scholar 

  28. Hu HM, Arcinas M, Boxer LM . A Myc-associated zinc finger protein-related factor binding site is required for the deregulation of c-myc expression by the immunoglobulin heavy chain gene enhancers in Burkitt's lymphoma. J Biol Chem 2002; 277: 9819–9824.

    Article  CAS  PubMed  Google Scholar 

  29. Tan-chiu E, Piccart M . Moving forward: Herceptin in the adjuvant setting. Oncol 2002; 63 (Suppl 1): 57–63.

    Article  CAS  Google Scholar 

  30. Geffen DB, Man S . New drugs for the treatment of cancer, 1990–2001. Isr Med Assoc J 2002; 4: 1124–1131.

    CAS  PubMed  Google Scholar 

  31. Bostwick DG et al. Current and proposed biologic markers in prostate cancer. J Cell Biochem 1992; 16: 65–67.

    Article  Google Scholar 

  32. Hellawell GO, Brewster SF . Growth factors and their receptors in prostate cancer. Br J Urol 2002; 89: 230–240.

    Article  CAS  Google Scholar 

  33. Varma VA, Austin GE, O'Connell AC . Antibodies to ras oncogene p2 l proteins lack immunohistochemical specificity for neoplastic epithelium in human prostate tissue. Arch Pathol Lab Med 1989; 113: 16–19.

    CAS  PubMed  Google Scholar 

  34. Santos E, Nebreda AR . Structural and functional properties of ras proteins. FASEB J 1989; 3: 2151–2163.

    Article  CAS  PubMed  Google Scholar 

  35. Sanowitz WS, Paul G, Hamilton SR . Reported binding of monoclonal antibody RAP-S to formalin fixed tissue sections is not indicative of ras p2l expression. Hum Pathol 1988; 19: 127–132.

    Article  Google Scholar 

  36. Sumiva H et al. Histochemical examination of the expression of ras p2l protein and R-1881-binding protein in human prostatic cancers. Eur J Cancer 1990; 26: 786–789.

    Article  Google Scholar 

  37. Peehl DM, Wehner N, Stamey TA . Activated Ki-ras oncogene in human prostatic adenocarcinoma. Prostate 1987; 10: 281–289.

    Article  CAS  PubMed  Google Scholar 

  38. Carter BS, Epstein JI, Isaacs WB . RAS Gene mutations in human prostate cancer. Cancer Res 1990; 50: 6830–6832.

    CAS  PubMed  Google Scholar 

  39. Gumerlock PH, Poonmallee UR, Meyers FJ, deVere-White RW . Activated ras alleles in human carcinoma of the prostate are rare. Cancer Res 1991; 51: 1632–1637.

    CAS  PubMed  Google Scholar 

  40. Konishi N et al. K-ras activation and ras p21 expression in latent prostatic carcinomas in Japanese men. Cancer 1992; 69: 2293–2299.

    Article  CAS  PubMed  Google Scholar 

  41. Konishi N et al. Comparison of ras activation in prostate carcinoma in Japanese and American men. Prostate 1997; 30: 53–57.

    Article  CAS  PubMed  Google Scholar 

  42. Watanabe M et al. International comparison on ras gene mutations in latent prostate carcinoma. Int J Cancer 1994; 58: 174–178.

    Article  CAS  PubMed  Google Scholar 

  43. Verma RS, Maniklal M, Conte RA, Godec CJ . Chromosomal basis of adenocarcinoma of the prostate. Cancer Invest 1999; 17: 441–447.

    Article  CAS  PubMed  Google Scholar 

  44. Wolf DA et al. Transcriptional downregulation of c-myc in human prostate carcinoma cells by the synthetic androgen mibolerone. Br J Cancer 1992; 65: 376–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Buttyan R et al. Enhanced expression of the c-myc proto-oncogene in high-grade human prostate cancer. Prostate 1987; 11: 327–337.

    Article  CAS  PubMed  Google Scholar 

  46. Funa K, Nordgren H, Nilsson S . In-situ expression of mRNA for proto-oncogenes in benign prostatic hyperplasia and in prostatic carcinoma. Scand J Urol Nephrol 1991; 25: 95–100.

    Article  CAS  PubMed  Google Scholar 

  47. Fukumoto M, Shevrin DH, Roninson IB . Analysis of gene amplification in human tumour cell lines. Proc Natl Acad Sci USA 1988; 85: 6846–6850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nag A, Smith RG . Amplification, rearrangement and elevated expression of c-myc in the human prostatic carcinoma cell line LNCAP. Prostate 1989; 15: 115–122.

    Article  CAS  PubMed  Google Scholar 

  49. Fox SB et al. EGFR. C-ERB-B2, p53 and c-myc expression in stage A1 prostate adenocarcinoma: prognostic determinants? J Urol 1993; 149: 331A.

    Google Scholar 

  50. Fox SB et al. p53 and c-myc expression in stage A1 prostatic adenocarcinoma: useful prognostic determinants? J Urol 1993; 150: 490–494.

    Article  CAS  PubMed  Google Scholar 

  51. Shih C, Padhy LC, Murray M, Weinberg RA . Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 1981; 290: 261–264.

    Article  CAS  PubMed  Google Scholar 

  52. Schechter AL et al. The neu gene: an erbB-homologous gene distinct from and unlinked to the gene encoding the EGF receptor. Science 1985; 229: 976–978.

    Article  CAS  PubMed  Google Scholar 

  53. King CR, Kraus MH, Aaronson SA . Amplification of a novel c-erbB-related gene in a human mammary carcinoma. Science 1985; 229: 974.

    Article  CAS  PubMed  Google Scholar 

  54. Semba K, Kamata N, Toyoshima K, Yamamoto T . A V-erb related proto-oncogene, C-ERB-B2 is distinct from the c-erbB-1 epidermal growth factor receptor gone and is amplified in a human salivary gland adenocarcinoma. Proc Natl Acad Sci USA 1985; 82: 6497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Singleton TP, Strickler JG . Clinical and pathologic significance of the C-ERB-B2 (HER-2/neu) oncogene. Pathol Annu 1992; 27: 165–190.

    PubMed  Google Scholar 

  56. Wang SC, Zhang L, Hortobagyi GN, Hung MC . Targeting HER2: recent developments and future directions for breast cancer patients. Semin Oncol 2001; 28: 21–29.

    Article  PubMed  Google Scholar 

  57. Scholl S, Beuzeboc P, Pouillart P . Targeting HER2 in other tumor types. Ann Oncol 2001; 12: S81–S87.

    Article  PubMed  Google Scholar 

  58. Menard S et al. HER2 overexpression in various tumor types, focussing on its relationship to the development of invasive breast cancer. Ann Oncol 2001; 12 (Suppl 1): S15–S19.

    Article  PubMed  Google Scholar 

  59. Oxley JD, Winkler MH, Gillatt DA, Peat DS . Her-2/neu oncogene amplification in clinically localised prostate cancer. J Clin Pathol 2002; 55: 118–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jorda M et al. Her2 expression in prostatic cancer: a comparison with mammary carcinoma. J Urol 2002; 168: 1412–1414.

    Article  PubMed  Google Scholar 

  61. Shi Y et al. Her-2/neu expression in prostate cancer: high level of expression associated with exposure to hormone therapy and androgen independent disease. J Urol 2001; 166: 1514–1519.

    Article  CAS  PubMed  Google Scholar 

  62. Sadasivan R et al. Over expression of HER-2/neu may be an indicator of poor prognosis in prostate cancer. J Urol 1993; 150: 126–131.

    Article  CAS  PubMed  Google Scholar 

  63. Kuhn EJ et al. Expression of thin C-ERB-B2 (HER-2/NEU) oncoprotein in human prostatic carcinoma. J Urol 1992; 150: 1427–1433.

    Article  Google Scholar 

  64. Savinainen KJ et al. Expression and gene copy number analysis of ERBB2 oncogene in prostate cancer. Am J Pathol 2002; 160: 339–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Veltri RW et al. Quantitative nuclear morphometry, Markovian texture descriptors and DNA content captured on a CAS-200 Image analysis system, combined with PCNA and HER-2/neu immunohistochemistry for prediction of prostate cancer progression. J Cell Biochem 1994; 19: 249–258.

    CAS  Google Scholar 

  66. Zetter BR, Banyard J . Cancer. The silence of the genes. Nature 2002; 419: 572–573.

    Article  CAS  PubMed  Google Scholar 

  67. Laible G et al. Mammalian homologues of the Polycomb-group gene Enhancer of zeste mediate gene silencing in Drosophila heterochromatin and at S. cerevisiae telomeres. EMBO J 1997; 16: 3219–3232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Olsson M, Lindahl G, Ruoslahti E . Genetic control of alpha-fetoprotein synthesis in the mouse. J Exp Med 1977; 145: 819–827.

    Article  CAS  PubMed  Google Scholar 

  69. Hsu V et al. Caenorhabditis elegans lin-45 raf is essential for larval viability, fertility and the induction of vulval cell fates. Genetics 2002; 160: 481–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hagemann C, Rapp UR . Isotype-specific functions of Raf kinases. Exp Cell Res 1999; 253: 34–46.

    Article  CAS  PubMed  Google Scholar 

  71. Kwon EJ et al. E2F-dependent transcription of the raf proto-oncogene during Drosophila development. Nucleic Acids Res 2001; 29: 1808–1814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Roovers K, Assoian RK . Integrating the MAP kinase signal into the G1 phase cell cycle machinery. Bioessays 2000; 22: 818–826.

    Article  CAS  PubMed  Google Scholar 

  73. Migliaccio A et al. Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation. EMBO J 2000; 19: 5406–5417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Huynh H . Induction of apoptosis in rat ventral prostate by finasteride is associated with alteration in MAP kinase pathways and Bcl-2 related family of proteins. Int J Oncol 2002; 20: 1297–1303.

    PubMed  Google Scholar 

  75. Park BJ et al. Mitogenic conversion of transforming growth factor-beta1 effect by oncogenic Ha-Ras-induced activation of the mitogen-activated protein kinase signaling pathway in human prostate cancer. Cancer Res 2000; 60: 3031–3038.

    CAS  PubMed  Google Scholar 

  76. Lau QC, Brusselbach S, Muller R . Abrogation of c-Raf expression induces apoptosis in tumor cells. Oncogene 1998; 16: 1899–1902.

    Article  CAS  PubMed  Google Scholar 

  77. Knudson AG . Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971; 68: 820.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Knudson AG . Hereditary cancer: two hits revisited. J Cancer Res Clin Oncol 1996; 122: 135–140.

    Article  CAS  PubMed  Google Scholar 

  79. Knudson AG . Two genetic hits (more or less) to cancer. Nat Rev Cancer 2001; 1: 157–162.

    Article  CAS  PubMed  Google Scholar 

  80. Dryja TP, Rapaport JM, Joyce JM, Petersen RA . Molecular detection of deletions involving band q14 of chromosome 13 in retinoblastomas. Proc Natl Acad Sci USA 1986; 83: 7319.

    Article  Google Scholar 

  81. Harbour JW . Molecular basis of low-penetrance retinoblastoma. Arch Ophthalmol 2001; 119: 1699–1704.

    Article  CAS  PubMed  Google Scholar 

  82. Thiagalingam S et al. Loss of heterozygosity as a predictor to map tumor suppressor genes in cancer: molecular basis of its occurrence. Curr Opin Oncol 2002; 14: 65–72.

    Article  CAS  PubMed  Google Scholar 

  83. Hickman ES, Moroni MC, Helin K . The role of p53 and pRB in apoptosis and cancer. Curr Opin Genet Dev 2002; 12: 60–66.

    Article  CAS  PubMed  Google Scholar 

  84. Hollstein M, Sidransky D, Vogelstein B, Harris C . p53 mutations in human cancers. Science 1991; 253: 49–53.

    Article  CAS  PubMed  Google Scholar 

  85. Marshall CJ . Tumour suppressor genes. Cell 1991; 64: 313–326.

    Article  CAS  PubMed  Google Scholar 

  86. Weinberg RA . Tumour suppressor genes. Science 1991; 254: 1138–1146.

    Article  CAS  PubMed  Google Scholar 

  87. Knudson AG . Antioncogenes and human cancer. Proc Natl Acad Sci USA 1993; 90: 10914–10921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kinzler KW, Vogelstein B . Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 1997; 386: 761–763.

    Article  CAS  PubMed  Google Scholar 

  89. Deng CX, Scott F . Role of the tumor suppressor gene BRCA1 in genetic stability and mammary gland tumor formation. Oncogene 2000; 19: 1059–1064.

    Article  CAS  PubMed  Google Scholar 

  90. Prime SS et al. A review of inherited cancer syndromes and their relevance to oral squamous cell carcinoma. Oral Oncol 2001; 37: 1–16.

    Article  CAS  PubMed  Google Scholar 

  91. Kawana Y et al. Loss of heterozygosity at 7q31.1 and 12p13-12 in advanced prostate cancer. Prostate 2002; 53: 60–64.

    Article  CAS  PubMed  Google Scholar 

  92. Smith JR et al. Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science 1996; 274: 1371–1374.

    Article  CAS  PubMed  Google Scholar 

  93. Friend SH et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and astrosarcoma. Nature 1986; 323: 643–646.

    Article  CAS  PubMed  Google Scholar 

  94. Fung YKT et al. Structural evidence for the authenticity of the human retinoblastoma gene. Science 1987; 236: 1657–1661.

    Article  CAS  PubMed  Google Scholar 

  95. Lee WH et al. Human retinoblastoma susceptibility gene: cloning identification and sequence. Science 1987; 235: 1394–1399.

    Article  CAS  PubMed  Google Scholar 

  96. Korabiowska M et al. Downregulation of the retinoblastoma gene expression in the progression of malignant melanoma. Pathobiology 2001; 69: 274–280.

    Article  CAS  PubMed  Google Scholar 

  97. Wang JY, Naderi S, Chen TT . Role of retinoblastoma tumor suppressor protein in DNA damage response. Acta Oncol 2001; 40: 689–695.

    Article  CAS  PubMed  Google Scholar 

  98. Brooks JD, Bova GS, Marshall FF, Isaacs WB . Allelic losses of retinoblastoma gene in primary renal and prostate cancer. J Urol 1993; 149: 376A.

    Google Scholar 

  99. Pidgeon GP, Kandouz M, Meram A, Honn KV . Mechanisms controlling cell cycle arrest and induction of apoptosis after 12-lipoxygenase inhibition in prostate cancer cells. Cancer Res 2002; 62: 2721–2727.

    CAS  PubMed  Google Scholar 

  100. Taneja SS, Ha S, Garabedian MJ . Androgen stimulated cellular proliferation in the human prostate cancer cell line LNCaP is associated with reduced retinoblastoma protein expression. J Cell Biochem 2001; 84: 188–199.

    Article  CAS  PubMed  Google Scholar 

  101. Bookstein R et al. Promoter deletion and loss of RB gene expression in human prostate carcinoma. Proc Natl Acad Sci USA 1990; 87: 7762–7767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Phillips SM et al. Loss of the retinoblastoma susceptibility gene (RB1) is a frequent and early event in prostatic tumorigenesis. Br J Cancer 1994; 70: 1252–1257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ittmann MM, Wieczorek R . Alterations of the retinoblastoma gene in clinically localized, stage B prostate adenocarcinomas. Hum Pathol 1996; 27: 28–34.

    Article  CAS  PubMed  Google Scholar 

  104. England NL et al. Identification of human tumour suppressor genes by monochromosome transfer: rapid growth-arrest response mapped to 9p21 is mediated solely by the cyclin-D-dependent kinase inhibitor gene, CDKN2A (p16INK4A). Carcinogenesis 1996; 17: 1567–1575.

    Article  CAS  PubMed  Google Scholar 

  105. Saxon PJ, Srivatsan ES, Stanbridge EJ . Introduction of human chromosome 11 via microcell transfer controls tumorigenic expression of HeLa cells. EMBO J 1986; 5: 3461–3466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bookstein R et al. Suppression of tumorigenicity of human prostate carcinoma cells by replacing a mutated RB gene. Science 1990; 247: 712–715.

    Article  CAS  PubMed  Google Scholar 

  107. Chop AM et al. Immunodetection of the presence or absence of full-length APC gene product in human colonic tissues. Anticancer Res 1995; 15: 991–997.

    CAS  PubMed  Google Scholar 

  108. Komminoth P, Long AA . In-situ polymerase chain reaction. An overview of methods, applications and limitations of a new molecular technique. Virchows Arch 1993; 64: 67–73.

    Article  CAS  Google Scholar 

  109. Kastan MB et al. A mammalian cell cycle checkpoint pathway utilising p53 and GADD45 is defective in ataxia-telangiectasia. Cell 1992; 71: 587–597.

    Article  CAS  PubMed  Google Scholar 

  110. Vogelstein B, Kinzler KW . p53 function and dysfunction. Cell 1992; 70: 523–526.

    Article  CAS  PubMed  Google Scholar 

  111. Arends MJ, Buckley CH, Wells SM . Aetiology, pathogenesis, and pathology of cervical neoplasia. J Clin Pathol 1998; 51: 96–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Levine AJ, Momand J, Finlay CA . The p53 TSG. Nature 1991; 351: 453–456.

    Article  CAS  PubMed  Google Scholar 

  113. Isaacs WB, Carter BS, Ewing CM . Wild-type p53 suppresses growth of human prostate cancer cells containing mutant p53 alleles. Cancer Res 1991; 51: 4716–4720.

    CAS  PubMed  Google Scholar 

  114. Konishi H et al. Detailed deletion mapping suggests the involvement of a tumour suppressor gene at 17p13.3, distal to p53, in the pathogenesis of lung cancers. Oncogene 1998; 17: 2095–2100.

    Article  CAS  PubMed  Google Scholar 

  115. Nigro JM et al. Mutations in the p53 gene occur in diverse human tumour types. Nature 1989; 342: 605–608.

    Article  Google Scholar 

  116. Liu MC, Gelmann EP . p53 gene mutations: case study of a clinical marker for solid tumors. Semin Oncol 2002; 29: 246–257.

    Article  CAS  PubMed  Google Scholar 

  117. Selivanova G . Mutant p53: the loaded gun. Curr Opin Invest Drugs 2001; 2: 1136–1141.

    CAS  Google Scholar 

  118. Greenblatt MS, Bennett WP, Holstein M, Harris CC . Mutations in p53 TSG: clues to cancer etiology and molecular pathogenesis. Cancer Res 1994; 54: 4855–4878.

    CAS  PubMed  Google Scholar 

  119. Aloni-Grinstein R, Schwartz D, Rotter V . Accumulation of wild-type p53 protein upon gamma-irradiation induces a G2 arrest-dependent immunoglobulin kappa light chain gene expression. EMBO J 1995; 14: 1392–1401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Atadja P et al. Increased activity of p53 in senescing fibroblasts. Proc Natl Acad Sci USA 1995; 92: 8348–8352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ueba T et al. Transcriptional regulation of basic fibroblast growth factor gene by p53 in human glioblastoma and hepatocellular carcinoma cells. Proc Natl Acad Sci USA 1994; 91: 9009–9013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dameron KM, Volpert OV, Tainsky MA, Bouck N . Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 1994; 265: 1582–1584.

    Article  CAS  PubMed  Google Scholar 

  123. Kieser A et al. Mutant p53 potentiates protein kinase C induction of vascular endothelial growth factor expression. Oncogene 1994; 9: 963–969.

    CAS  PubMed  Google Scholar 

  124. Soussi T . The p53 tumor suppressor gene: from molecular biology to clinical investigation. Ann NY Acad Sci 2000; 910: 121–137.

    Article  CAS  PubMed  Google Scholar 

  125. Steele RJ, Thompson AM, Hall PA, Lane DP . The p53 tumour suppressor gene. Br J Surg 1998; 85: 1460–1467.

    Article  CAS  PubMed  Google Scholar 

  126. Cadwell C, Zambetti GP . The effects of wild-type p53 tumor suppressor activity and mutant p53 gain-of-function on cell growth. Gene 2001; 277: 15–30.

    Article  CAS  PubMed  Google Scholar 

  127. Clarke AR et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 1993; 302: 849–852.

    Article  Google Scholar 

  128. Lowe SW et al. p53 is required for radiation induced apoptosis in mouse thymocytes. Nature 1993; 362: 847–849.

    Article  CAS  PubMed  Google Scholar 

  129. Sun X, Shimizu H, Yamamoto K . Identification of a novel p53 promoter element involved in genotoxic stress-inducible p53 gene expression. Mol Cell Biol 1995; 15: 4489–4496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Winters ZE . P53 pathways involving G2 checkpoint regulators and the role of their subcellular localisation. JR Coll Surg Edinb 2002; 47: 591–598.

    CAS  Google Scholar 

  131. Smith ML, Seo YR . p53 regulation of DNA excision repair pathways. Mutagenesis 2002; 17: 149–156.

    Article  CAS  PubMed  Google Scholar 

  132. Harper JW et al. The p21 CDK interacting protein cip 1 is a potent inhibitor of G1 CDK. Cell 1993; 75: 805–816.

    Article  CAS  PubMed  Google Scholar 

  133. Balint EE, Vousden KH . Activation and activities of the p53 tumour suppressor protein. Br J Cancer 2001; 85: 1813–1823.

    Article  CAS  PubMed Central  Google Scholar 

  134. Al-Maghrabi J et al. p53 alteration and chromosomal instability in prostatic high-grade intraepithelial neoplasia and concurrent carcinoma: analysis by immunohistochemistry, interphase in situ hybridization, and sequencing of laser-captured microdissected specimens. Mod Pathol 2001; 14: 1252–1262.

    Article  CAS  PubMed  Google Scholar 

  135. Navone NM et al. p53 protein accumulation and gene mutation in the progression of human prostate carcinoma. J Natl Cancer Inst 1993; 85: 1657–1669.

    Article  CAS  PubMed  Google Scholar 

  136. Thomas DJ et al. p53 expression and clinical outcome in prostate cancer. Br J Urol 1993; 72: 778–781.

    Article  CAS  PubMed  Google Scholar 

  137. van Veldhuizen PJ et al. Mutant p53 expression in prostate carcinoma. Prostate 1993; 22: 23–30.

    Article  CAS  PubMed  Google Scholar 

  138. Thompson S et al. p53 c-erb-2 and EGFR in the benign and malignant prostate. J Urol 1992; 147: 496–499.

    Article  PubMed  Google Scholar 

  139. Visakorpi T et al. Small subgroup of aggressive, highly proliferative prostatic carcinomas defined by p53 accumulations. J Natl Cancer Inst 1992; 84: 883–887.

    Article  CAS  PubMed  Google Scholar 

  140. Bookstein R et al. p53 mutation in human PC. Cancer Res 1993; 53: 3369–3373.

    CAS  PubMed  Google Scholar 

  141. Effert PJ, McCoy RH, Walther PJ, Liu ET . p53 gene alterations in human prostate carcinoma. J Urol 1993; 150: 257–261.

    Article  CAS  PubMed  Google Scholar 

  142. Hamdy FC et al. p53 mutant expression in human prostatic adenocarcinoma. J Urol 1993; 149: 377.

    Google Scholar 

  143. Uchida T et al. Infrequent involvement of p53 gene mutations in the tumorigenesis of Japanese prostate cancer. Br J Cancer 1993; 68: 751–755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Heidenberg H et al. Alteration of the TSG p53 in a high fraction of treatment resistant prostate cancer. J Urol 1995; 154: 414–421.

    Article  CAS  PubMed  Google Scholar 

  145. Brooks J D et al. An uncertain role of p53 gene alterations in human prostate cancers. Cancer Res 1996; 56: 3814.

    PubMed  Google Scholar 

  146. Gumerlock PH et al. Mutation rate of p53 in prostate cancer (PC) and benign prostatic hypertrophy (BPH). J Urol 1994; 151: 470A.

    Article  Google Scholar 

  147. Voeller JH, Sugars LY, Pretloe T, Gelman EP . p53 oncogene mutations in human prostate cancer specimens. J Urol 1994; 151: 492–495.

    Article  CAS  PubMed  Google Scholar 

  148. Navone NM et al. p53 mutations in prostate cancer bone metastases suggest that selected p53 mutants in the primary site define foci with metastatic potential. J Urol 1999; 161: 304–308.

    Article  CAS  PubMed  Google Scholar 

  149. Mottaz AE et al. Abnormal p53 expression is rare in clinically localized human prostate cancer: comparison between immunohistochemical and molecular detection of p53 mutations. Prostate 1997; 31: 209–215.

    Article  CAS  PubMed  Google Scholar 

  150. Bangma CH, Nasu Y, Ren C, Thompson TC . Metastasis-related genes in prostate cancer. Semin Oncol 1999; 26: 422–427.

    CAS  PubMed  Google Scholar 

  151. Gousse AE et al. A novel approach for detecting p53 mutations in heterogeneous prostate tissue samples using TA-cloning-PCR-SSCP. J Urol 1994; 151: 471A.

    Google Scholar 

  152. Bauer JJ et al. p53 nuclear protein expression is an independent prognostic marker in clinically localised PC patients undergoing radical prostatectomy. Clin Cancer Res 1995; 1: 1295–1300.

    CAS  PubMed  Google Scholar 

  153. Katayose D et al. Recombinant adenovirus vector expressing wild type p53 is a potent inhibitor of prostate cancer cell proliferation. Urology 1995; 46: 843–848.

    Article  PubMed  Google Scholar 

  154. Merritt JA, Roth JA, Logothetis CJ . Clinical evaluation of adenoviral-mediated p53 gene transfer: review of INGN 201 studies. Semin Oncol 2001; 28: 105–114.

    Article  CAS  PubMed  Google Scholar 

  155. Li J et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast and prostate cancer. Science 1997; 275: 1943.

    Article  CAS  PubMed  Google Scholar 

  156. Li DM, Sun H . TEP1, encoded by a candidate tumour suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer Res 1997; 57: 2124–2129.

    CAS  PubMed  Google Scholar 

  157. Steck PA et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 1997; 15: 356–362.

    Article  CAS  PubMed  Google Scholar 

  158. Hunter T . The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Philos Trans R Soc of Lond B 1998; 353: 583–605.

    Article  CAS  Google Scholar 

  159. Clark EA, Brugge JS . Integrins and signal transduction pathways: the road taken. Science 1995; 268: 233–239.

    Article  CAS  PubMed  Google Scholar 

  160. Fueyo J, Gomez-Manzano C, Liu TJ, Yung WK . Delivery of cell cycle genes to block astrocytoma growth. J Neuro-Oncol 2001; 51: 277–287.

    Article  CAS  Google Scholar 

  161. Sakorafas GH, Tsiotou AG . Genetic predisposition to breast cancer: a surgical perspective. Br J Surg 2000; 87: 149–162.

    Article  CAS  PubMed  Google Scholar 

  162. Liaw D et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 1997; 16: 64–67.

    Article  CAS  PubMed  Google Scholar 

  163. Marsh DJ et al. Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nat Genet 1997; 16: 333–334.

    Article  CAS  PubMed  Google Scholar 

  164. Dong JT, Sipe TW, Hyytinen ER . PTEN/MMAC1 is infrequently mutated in pT2 and pT3 carcinomas of the prostate. Oncogene 1998; 17: 1979–1982.

    Article  CAS  PubMed  Google Scholar 

  165. Whang YE et al. Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc Natl Acad Sci USA 1998; 95: 5246–5250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Cairns P et al. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res 1997; 57: 4997–5000.

    CAS  PubMed  Google Scholar 

  167. Rubin MA et al. 10q23.3 loss of heterozygosity is higher in lymph node-positive (pT2-3,N+) versus lymph node-negative (pT2-3,N0) prostate cancer. Hum Pathol 2000; 31: 504–508.

    Article  CAS  PubMed  Google Scholar 

  168. McMenamin ME et al. Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res 1999; 59: 4291–4296.

    CAS  PubMed  Google Scholar 

  169. Nihei N et al. Localization of metastasis suppressor gene(s) for rat prostatic cancer to the long arm of human chromosome 10. Genes Chromosomes Cancer 1995; 14: 112–119.

    Article  CAS  PubMed  Google Scholar 

  170. Prozialeck W et al. Cadherins and NCAM as potential targets in metal toxicity. Toxicol Appl Pharmacol 2002; 182: 255–265.

    Article  CAS  PubMed  Google Scholar 

  171. Lilien J, Balsamo J, Arregui C, Xu G . Turn-off, drop-out: functional state switching of cadherins. Dev Dyn 2002; 224: 18–29.

    Article  CAS  PubMed  Google Scholar 

  172. Hajra KM, Fearon ER . Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer 2002; 34: 255–268.

    Article  CAS  PubMed  Google Scholar 

  173. Semba S, Yamakawa M, Sasano H . The cadherin-catenin superfamily in endocrine tumors. Endocr Pathol 2001; 12: 1–13.

    Article  CAS  PubMed  Google Scholar 

  174. Van Aken E et al. Defective E-cadherin/catenin complexes in human cancer. Virchows Arch 2001; 439: 725–751.

    Article  CAS  PubMed  Google Scholar 

  175. Carter BS et al. Allelic loss of chromosomes 16q and 10q in human prostate cancer. Proc Natl Acad Sci USA 1990; 87: 8751–8755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bergerheim USR, Kunimi K, Collins VP, Ekman P . Deletion mapping of chromosomes 8, 10 and 16 in human prostate carcinoma. Genes Chromosomes Cancer 1991; 3: 215–220.

    Article  CAS  PubMed  Google Scholar 

  177. Richards FM, McKee SA, Rajpar MH . Germline E-cadherin gene (CDH1) mutations predispose to familial gastric cancer and colorectal cancer. Hum Mol Genet 1999; 8: 607–610.

    Article  CAS  PubMed  Google Scholar 

  178. Lewis FR et al. Prophylactic total gastrectomy for familial gastric cancer. Surgery 2001; 130: 612–617.

    Article  CAS  PubMed  Google Scholar 

  179. Caldas C et al. Familial gastric cancer: overview and guidelines for management. J Med Genet 1999; 36: 873–880.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Bussemakers MJG et al. Decreased expression of E-cadherin in the progression of rat prostatic cancer. Cancer Res 1992; 52: 2916–2999.

    CAS  PubMed  Google Scholar 

  181. Bryden AA et al. E-cadherin and beta-catenin are down-regulated in prostatic bone metastases. Br J Urol 2002; 89: 400–403.

    Article  CAS  Google Scholar 

  182. Umbas R et al. Expression of cellular adhesion molecule E-cahedrin is reduced or absent in high-grade prostate cancer. Cancer Res 1992; 52: 5104–5109.

    CAS  PubMed  Google Scholar 

  183. Umbas R et al. Decreased E-cadherin expression is associated with poor prognosis in patients with prostate cancer. Cancer Res 1994; 54: 3929–3933.

    CAS  PubMed  Google Scholar 

  184. Kallakury BV et al. Decreased expression of catenins (alpha and beta), p120 CTN, and E-cadherin cell adhesion proteins and E-cadherin gene promoter methylation in prostatic adenocarcinomas. Cancer 2001; 92: 2786–2795.

    Article  CAS  PubMed  Google Scholar 

  185. Wehbi NK et al. Pan-cadherin as a high level phenotypic biomarker for prostate cancer. J Urol 2002; 167: 2215–2221.

    Article  CAS  PubMed  Google Scholar 

  186. Hall JM et al. Linkage analysis of early-onset familial breast cancer to chromosome 17q21. Science 1990; 250: 1684–1689.

    Article  CAS  PubMed  Google Scholar 

  187. Narod SA et al. Familial breast-ovarian cancer locus on chromosome 17q12–q23. Lancet 1991; 338: 82–83.

    Article  CAS  PubMed  Google Scholar 

  188. Miki Y, Swensen J, Shattuck-Eidens D . A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994; 266: 66–71.

    Article  CAS  PubMed  Google Scholar 

  189. Wooster R et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science 1994; 265: 2088–2090.

    Article  CAS  PubMed  Google Scholar 

  190. Gayther SA, Ponder BA . Mutations of the BRCA1 and BRCA2 genes and the possibilities for predictive testing. Mol Med Today 1997; 3: 168–174.

    Article  CAS  PubMed  Google Scholar 

  191. Struewing JP et al. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med 1997; 336: 1401–1408.

    Article  CAS  PubMed  Google Scholar 

  192. Bennett KE, Howell A, Evans DG, Birch JM . A follow-up study of breast and other cancers in families of an unselected series of breast cancer patients. Br J Cancer 2002; 86: 718–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Eerola H et al. Risk of cancer in BRCA1 and BRCA2 mutation-positive and -negative breast cancer families. Cancer Causes Control 2001; 12: 739–746.

    Article  CAS  PubMed  Google Scholar 

  194. Tulinius H et al. The effect of a single BRCA2 mutation on cancer in Iceland. J Med Genet 2002; 39: 457–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Couch FJ et al. Genetic analysis of eight breast-ovarian cancer families with suspected BRCA1 mutations. J Natl Cancer Inst Monogr 1995; 17: 9–14.

    Google Scholar 

  196. Futreal PA et al. BRCA1 mutations in primary breast and ovarian carcinomas. Science 1994; 266: 120–122.

    Article  CAS  PubMed  Google Scholar 

  197. Chen Y et al. BRCA1 is a 220-kDa nuclear phosphoprotein that is expressed and phosphorylated in a cell cycle-dependent manner. Cancer Res 1996; 56: 3168–3172.

    CAS  PubMed  Google Scholar 

  198. Tavtigian SV et al. The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nat Genet 1996; 12: 333–337.

    Article  CAS  PubMed  Google Scholar 

  199. Easton D . Breast cancer genes—what are the real risks? Nat Genet 1997; 16: 210–211.

    Article  CAS  PubMed  Google Scholar 

  200. Ponder B . Breast cancer genes. Searches begin and end. Nature 1994; 371: 279.

    Article  CAS  PubMed  Google Scholar 

  201. Arason A, Barkardottir RB, Egilsson V . Linkage analysis of chromosome 17q markers and breast-ovarian cancer in Icelandic families and possible relationship to prostatic cancer. Am J Hum Genet 1993; 52: 711–717.

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Johannesdottir G et al. High prevalence of the 999del5 mutation in icelandic breast and ovarian cancer patients. Cancer Res 1996; 56: 3663–3665.

    CAS  PubMed  Google Scholar 

  203. Ford D et al. Risks of cancer in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Lancet 1994; 343: 692–695.

    Article  CAS  PubMed  Google Scholar 

  204. Anderson DE, Badzioch MD . Familial breast cancer risks. Effects of prostate and other cancers. Cancer 1993; 72: 114–119.

    Article  CAS  PubMed  Google Scholar 

  205. Goldgar DE, Easton DF, Cannon-Albright LA, Skolnick MH . Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst 1994; 86: 1600–1608.

    Article  CAS  PubMed  Google Scholar 

  206. Thompson WD . Genetic epidemiology of breast cancer. Cancer 1994; 74: 279–287.

    Article  CAS  PubMed  Google Scholar 

  207. Gao B et al. Constitutive activation of JAK-STAT3 signaling by BRCA1 in human prostate cancer cells. FEBS Lett 2001; 488: 179–184.

    Article  CAS  PubMed  Google Scholar 

  208. McCahy PJ, Harris CA, Neal DE . Breast and prostate cancer in the relatives of men with prostate cancer. Br J Urol 1996; 78: 552–556.

    Article  CAS  PubMed  Google Scholar 

  209. Cerhan JR et al. Family history and prostate cancer risk in a population-based cohort of Iowa men. Cancer Epidemiol Biomarkers Prev 1999; 8: 53–60.

    CAS  PubMed  Google Scholar 

  210. Isaacs SD et al. Risk of cancer in relatives of prostate cancer probands. J Natl Cancer Inst 1995; 87: 991–996.

    Article  CAS  PubMed  Google Scholar 

  211. Keetch DW, Rice JP, Suarez BK, Catalona WJ . Familial aspects of prostate cancer: a case control study. J Urol 1995; 154: 2100–2102.

    Article  CAS  PubMed  Google Scholar 

  212. Murakami YS, Brothman AR, Leach RJ, White RL . Suppression of malignant phenotype in a human prostate cancer cell line by fragments of normal chromosomal region 17q. Cancer Res 1995; 55: 3389–3394.

    CAS  PubMed  Google Scholar 

  213. Gao X et al. Loss of heterozygosity of the BRCA1 and other loci on chromosome 17q in human prostate cancer. Cancer Res 1995; 55: 1002–1005.

    CAS  PubMed  Google Scholar 

  214. Brothman AR et al. Loss of chromosome 17 loci in prostate cancer detected by polymerase chain reaction quantitation of allelic markers. Genes Chromosomes Cancer 1995; 13: 278–284.

    Article  CAS  PubMed  Google Scholar 

  215. Uchida T et al. BRCA1 gene mutation and loss of heterozygosity on chromosome 17q21 in primary prostate cancer. Int J Cancer 1999; 84: 19–23.

    Article  CAS  PubMed  Google Scholar 

  216. Rokman A et al. Germline alterations of the RNASEL gene, a candidate HPC1 gene at 1q25, in patients and families with prostate cancer. Am J Hum Genet 2002; 70: 1299–1304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Carpten J et al. Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat Genet 2002; 30: 181–184.

    Article  CAS  PubMed  Google Scholar 

  218. Wang L et al. Analysis of the RNASEL gene in familial and sporadic prostate cancer. Am J Hum Genet 2002; 71: 116–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Rennert H et al. A novel founder mutation in the RNASEL gene, 471delAAAG, is associated with prostate cancer in Ashkenazi Jews. Am J Hum Genet 2002; 71: 981–984.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Casey G et al. RNASEL Arg462Gln variant is implicated in up to 13% of prostate cancer cases. Nat Genet 2002; 32: 581–583.

    Article  CAS  PubMed  Google Scholar 

  221. Moulton KS, Semple K, Wu H, Glass CK . Cell-specific expression of the macrophage scavenger receptor gene is dependent on PU*1 and a composite AP-1/ets motif. Mol Cell Biol 1994; 14: 4408–4418.

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Suzuki H et al. The multiple roles of macrophage scavenger receptors (MSR) in vivo: resistance to atherosclerosis and susceptibility to infection in MSR knockout mice. Atheroscler Thromb 1997; 4: 1–11.

    Article  CAS  Google Scholar 

  223. Xu J et al. Linkage and association studies of prostate cancer susceptibility: evidence for linkage at 8p22–23. Am J Hum Genet 2001; 69: 341–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Matsuyama H et al. Clinical significance of chromosome 8p, 10q, and 16q deletions in prostate cancer. Prostate 2003; 54: 103–111.

    Article  CAS  PubMed  Google Scholar 

  225. Xu J et al. Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nat Genet 2002; 32: 321–325.

    Article  CAS  PubMed  Google Scholar 

  226. Xu J et al. Common sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Am J Hum Genet 2003; 72: 208–212.

    Article  CAS  PubMed  Google Scholar 

  227. Vincent JB et al. The RAY1/ST7 tumor-suppressor locus on chromosome 7q31 represents a complex multi-transcript system. Genomics 2002; 80: 283–294.

    Article  CAS  PubMed  Google Scholar 

  228. Zenklusen JC, Conti CJ, Green ED . Mutational and functional analyses reveal that ST7 is a highly conserved tumor-suppressor gene on human chromosome 7q31. Nat Genet 2001; 27: 392–398.

    Article  CAS  PubMed  Google Scholar 

  229. Dong SM, Sidransky D . Absence of ST7 gene alterations in human cancer. Clin Cancer Res 2002; 8: 2939–2941.

    CAS  PubMed  Google Scholar 

  230. Rennie PS, Nelson CC . Epigenetic mechanisms for progression of prostate cancer. Cancer Metast Rev 1999; 17: 401–409.

    Article  CAS  Google Scholar 

  231. Henderson CJ et al. π-class glutathione S-transferase: regulation and function. Chem Biol Interact 1998; 111–112: 69–82.

    Article  PubMed  Google Scholar 

  232. Ryberg D et al. Genotypes of glutathione transferase M1 and P1 and their significance for lung DNA adduct levels and cancer risk. Carcinogenesis 1997; 18: 1285–1289.

    Article  CAS  PubMed  Google Scholar 

  233. Goessl C et al. Methylation-specific PCR for detection of neoplastic DNA in biopsy washings. Pathology 2002; 196: 331–334.

    Article  CAS  Google Scholar 

  234. Harden SV, Guo Z, Epstein JI, Sidransky D . Quantitative GSTP1 methylation clearly distinguishes benign prostatic tissue and limited prostate adenocarcinoma. J Urol 2003; 169: 1138–1142.

    Article  CAS  PubMed  Google Scholar 

  235. Singal R, van Wert J, Bashambu M . Cytosine methylation represses glutathione S-transferase P1 (GSTP1) gene expression in human prostate cancer cells. Cancer Res 2001; 61: 4820–4826.

    CAS  PubMed  Google Scholar 

  236. Thibault A et al. A phase II study of 5-aza-2′deoxycytidine (decitabine) in hormone independent metastatic (D2) prostate cancer. Tumori 1998; 84: 87–89.

    Article  CAS  PubMed  Google Scholar 

  237. El Rouby S, Rao PH, Newcomb EW . Assignment of the human B-cell-derived (BCD1) proto-oncogene to 10p14–p15. Genomics 1997; 43: 395–397.

    Article  CAS  PubMed  Google Scholar 

  238. Onyango P et al. Assignment of the gene encoding the core promoter element binding protein (COPEB) to human chromosome 10p15 by somatic hybrid analysis and fluorescence in situ hybridization. Genomics 1998; 48: 143–144.

    Article  CAS  PubMed  Google Scholar 

  239. Narla G et al. KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science 2001; 294: 2563–2566.

    Article  CAS  PubMed  Google Scholar 

  240. Chen C et al. Deletion, mutation, and loss of expression of KLF6 in human prostate cancer. Am J Pathol 2003; 162: 1349–1354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Chekmareva MA et al. Chromosome 17-mediated dormancy of AT6.1 prostate cancer micrometastases. Cancer Res 1998; 58: 4963–4969.

    CAS  PubMed  Google Scholar 

  242. Ichikawa T, Ichikawa Y, Dong J, Hawkins AL . Localization of metastatic suppressor gene(s) for prostatic cancer to the short arm of human chromosome 11. Cancer Res 1992; 52: 3486–3490.

    CAS  PubMed  Google Scholar 

  243. Ichikawa T et al. Mapping of metastasis suppressor genes for prostate cancer by microcell-mediated chromosome transfer. Asian J Androl 2000; 2: 167–171.

    CAS  PubMed  Google Scholar 

  244. Yoshida BA et al. Prostate cancer metastasis-suppressor genes: a current perspective. In vivo 1998; 12: 49–58.

    CAS  PubMed  Google Scholar 

  245. Suzuki H et al. Identification of the rat homologue of KAI1 and its expression in Dunning rat prostate cancers. Prostate 1998; 37: 253–260.

    Article  CAS  PubMed  Google Scholar 

  246. Dong JT et al. Prostate cancer–biology of metastasis and its clinical implications. World J Urol 1996; 14: 182–189.

    Article  CAS  PubMed  Google Scholar 

  247. Yu Y et al. Loss of KAI-1 messenger RNA expression in both high-grade and invasive human bladder cancers. Clin Cancer Res 1997; 3: 1045–1049.

    CAS  PubMed  Google Scholar 

  248. Hemler ME, Mannion BA, Berditchevski F . Association of TM4SF proteins with integrins: relevance to cancer. Biochem Biophys Acta 1996; 1287: 67–71.

    PubMed  Google Scholar 

  249. Gao AC, Lou W, Dong JT, Isaacs JT . CD44 is a metastasis suppressor gene for prostatic cancer located on human chromosome 11p13. Cancer Res 1997; 57: 846–849.

    CAS  PubMed  Google Scholar 

  250. Mashimo T, Watanabe M, Hirota S . The expression of the KAI-1 gene, a tumour metastasis suppressor, is directly activated by p53. Proc Natl Acad Sci USA 1998; 95: 11307–11311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Dong JT, Isaacs WB, Barrett JC, Isaacs JT . Genomic organisation of the human KAI-1 metastasis-suppressor gene. Genomics 1997; 41: 25–32.

    Article  CAS  PubMed  Google Scholar 

  252. DeMarzo AM et al. CD44 and CD44v6 down-regulation in clinical prostate carcinoma: relation to Gleason grade and cyto-architecture. Prostate 1998; 34: 162–168.

    Article  CAS  Google Scholar 

  253. Aaltomaa S, Lipponen P, Ala-Opas M, Kosma VM . Expression and prognostic value of CD44 standard and variant v3 and v6 isoforms in prostate cancer. Eur Urol 2001; 39: 138–144.

    Article  CAS  PubMed  Google Scholar 

  254. Aaltomaa S et al. Prognostic value of CD44 standard, variant isoforms 3 and 6 and -catenin expression in local prostate cancer treated by radical prostatectomy. Eur Urol 2000; 38: 555–562.

    Article  CAS  PubMed  Google Scholar 

  255. Nagabhushan M et al. Altered expression of CD44 in human prostate cancer during progression. Am J Clin Pathol 1996; 106: 647–651.

    Article  CAS  PubMed  Google Scholar 

  256. Noordzij MA et al. The prognostic value of CD44 isoforms in prostate cancer patients treated by radical prostatectomy. Clin Cancer Res 1997; 3: 805–815.

    CAS  PubMed  Google Scholar 

  257. Verkaik NS et al. Silencing of CD44 expression in prostate cancer by hypermethylation of the CD44 promoter region. Lab Invest 2000; 80: 1291–1298.

    Article  CAS  PubMed  Google Scholar 

  258. Verkaik NS et al. Down-regulation of CD44 expression in human prostatic carcinoma cell lines is correlated with DNA hypermethylation. Int J Cancer 1999; 80: 439–443.

    Article  CAS  PubMed  Google Scholar 

  259. Noordzij MA, van Steenbrugge GJ, Schroder FH, Van der Kwast TH . Decreased expression of CD44 in metastatic prostate cancer. Int J Cancer 1999; 84: 478–483.

    Article  CAS  PubMed  Google Scholar 

  260. Golden A et al. Nucleoside diphosphate kinases, nm23, and tumour netastasis: Possible biochemical mechanisms. Cancer Treat Res 1992; 63: 345–358.

    Article  CAS  PubMed  Google Scholar 

  261. Igawa M, Rukstalis DB, Tanabe T, Chodak GW . High levels of nm23 expression are related to cell proliferation in human prostate cancer. Cancer Res 1994; 54: 1313–1318.

    CAS  PubMed  Google Scholar 

  262. Lacombe ML et al. The human Nm23/nucleoside diphosphate kinases. J Bioenerg Biomembr 2000; 32: 247–258.

    Article  CAS  PubMed  Google Scholar 

  263. Lombardi D, Lacombe ML, Paggi MG . nm23: unravelling its biological function in cell differentiation. J Cell Physiol 2000; 182: 144–149.

    Article  CAS  PubMed  Google Scholar 

  264. Hartsough MT, Steeg PS . Nm23/nucleoside diphosphate kinase in human cancers. J Bioenerg Biomembr 2000; 32: 301–308.

    Article  CAS  PubMed  Google Scholar 

  265. Heimann R, Hellman S . Individual characterisation of the metastatic capacity of human breast carcinoma. Eur J Cancer 2000; 36: 1631–1639.

    Article  CAS  PubMed  Google Scholar 

  266. Igawa M et al. Association of nm23 protein levels in human prostates with proliferating cell nuclear antigen expression at autopsy. Eur Urol 1996; 30: 383–387.

    Article  CAS  PubMed  Google Scholar 

  267. Myers RB et al. Expression of nm23-H1 in prostatic intraepithelial neoplasia and adenocarcinoma. Hum Pathol 1996; 27: 1021–1024.

    Article  CAS  PubMed  Google Scholar 

  268. Jensen SL et al. Increased levels of nm23 H1/nucleoside diphosphate kinase A mRNA associated with adenocarcinoma of the prostate. World J Urol 1996; 14: S21–S25.

    Article  PubMed  Google Scholar 

  269. Weber JL, May PE . Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 1989; 44: 388–396.

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Weber JL . Informativeness of human (dC-dA)n.dG-dT)n polymorphisms. Genomics 1990; 7: 524–530.

    Article  CAS  PubMed  Google Scholar 

  271. Rohrbach H et al. Microsatellite instability and loss of heterozygosity in prostatic carcinomas: comparison of primary tumours and of corresponding recurrences after androgen-deprivation therapy and lymph-node metastases. Prostate 1999; 40: 20–27.

    Article  CAS  PubMed  Google Scholar 

  272. Peinado MA, Malkhosyan S, Velazquez A, Perucho M . Isolation and characterization of allelic losses and gains in colorectal tumours by arbitrarily primed polymerase chain reaction. Proc Natl Acad Sci USA 1992; 89: 10065–10069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Peltomaki P et al. Genetic mapping of a locus predisposing to human colorectal cancer. Science 1993; 260: 810–812.

    Article  CAS  PubMed  Google Scholar 

  274. Ericson K et al. Defective mismatch-repair in patients with multiple primary tumours including colorectal cancer. Eur J Cancer 2003; 39: 240–248.

    Article  CAS  PubMed  Google Scholar 

  275. Velasco A et al. Differential expression of the mismatch repair gene hMSH2 in malignant prostate tissue is associated with cancer recurrence. Cancer 2002; 94: 690–699.

    Article  CAS  PubMed  Google Scholar 

  276. Yeh CC, Lee C, Dahiya R . DNA mismatch repair enzyme activity and gene expression in prostate cancer. Biochem Biophys Res Commun 2001; 285: 409–413.

    Article  CAS  PubMed  Google Scholar 

  277. Strom SS et al. Reduced expression of hMSH2 and hMLH1 and risk of prostate cancer: a case–control study. Prostate 2001; 47: 269–275.

    Article  CAS  PubMed  Google Scholar 

  278. Gao X et al. High frequency of mutator phenotype in human prostatic adenocarcinoma. Oncogene 1994; 9: 2999–3003.

    CAS  PubMed  Google Scholar 

  279. Egawa S et al. Genomic instability of microsatellite repeats in prostate cancer: relationship to clinicopathological variables. Cancer Res 1995; 55: 2418–2421.

    CAS  PubMed  Google Scholar 

  280. Watanabe M et al. Microsatellite instability in human prostate cancer. Br J Cancer 1995; 72: 562–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Dahiya R et al. Chromosome 3p24–26 and 3p22–12 loss in human prostatic adenocarcinoma. Int J Cancer 1997; 71: 20–25.

    Article  CAS  PubMed  Google Scholar 

  282. Suzuki H et al. Microsatellite instability and other molecular abnormalities in human prostate cancer. Jpn J Cancer Res 1995; 86: 956–961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Uchida T et al. Microsatellite instability in prostate cancer. Oncogene 1995; 10: 1019–1022.

    CAS  PubMed  Google Scholar 

  284. Dahiya R et al. High frequency of genetic instability of microsatellites in human prostatic adenocarcinoma. Int J Cancer 1997; 72: 762–767.

    Article  CAS  PubMed  Google Scholar 

  285. Cunningham JM et al. Allelic imbalance and microsatellite instability in prostate adenocarcinoma. Cancer Res 1996; 56: 4475–4482.

    CAS  PubMed  Google Scholar 

  286. Fishel R et al. The human mutator gene homologue MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 1993; 75: 1027–1038.

    Article  CAS  PubMed  Google Scholar 

  287. Fleisher AS et al. Microsatellite instability in inflammatory bowel disease-associated neoplastic lesions is associated with hypermethylation and diminished expression of the DNA mismatch repair gene, hMLH1. Cancer Res 2000; 60: 4864–4868.

    CAS  PubMed  Google Scholar 

  288. Dahiya R . DNA repair genes in human fetal and adult prostatic tissues and cancer cell lines using differential RT-PCR. Urol Oncol 1996; 2: 52–56.

    Article  CAS  PubMed  Google Scholar 

  289. Colombo P et al. Molecular disorders in transitional vs peripheral zone prostate adenocarcinoma. Int J Cancer 2001; 94: 383–389.

    Article  CAS  PubMed  Google Scholar 

  290. Wille AH et al. Focal microsatellite mutations in relatives with prostatic adenocarcinoma. Anticancer Res 1996; 16: 3883–3886.

    CAS  PubMed  Google Scholar 

  291. Lacombe L et al. Microsatellite instability and deletion analysis of chromosome 10 in human prostate cancer. Int J Cancer 1996; 69: 110–113.

    Article  CAS  PubMed  Google Scholar 

  292. Watanabe M et al. APC gene mutations in human prostate cancer. Jpn J Clin Oncol 1996; 26: 77–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M K Karayi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karayi, M., Markham, A. Molecular biology of prostate cancer. Prostate Cancer Prostatic Dis 7, 6–20 (2004). https://doi.org/10.1038/sj.pcan.4500697

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.pcan.4500697

Keywords

This article is cited by

Search

Quick links