Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Solid-state chemistry

Crystal tennis rackets

The idea of bendy crystals, especially ones that move rapidly and reversibly in response to light, seems strange. Such materials have now been prepared — but how do they change shape so dramatically without cracking?

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Light-driven crystal movement.


  1. 1

    Whittaker, M. et al. Nature 378, 748–751 (1995).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Pease, A. R. et al. Acc. Chem. Res. 34, 433–444 (2001).

    CAS  Article  Google Scholar 

  3. 3

    Kobatake, S., Takami, S., Muto, H., Ishikawa, T. & Irie, M. Nature 446, 778–781 (2007).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Finkelmann, H., Nishikawa, E., Pereira, G. G. & Warner, M. Phys. Rev. Lett. 87, 15501–15504 (2001).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Novak, K., Enkelmann, V., Wegner, G. & Wagener, K. B. Angew. Chem. Int. Edn Engl. 32, 1614–1616 (1993).

    Article  Google Scholar 

  6. 6

    Köhler, W., Novak, K. & Enkelmann, V. J. Chem. Phys. 101, 10474–10480 (1994).

    ADS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

McBride, J. Crystal tennis rackets. Nature 446, 736–737 (2007).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing