Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Top-down signal from prefrontal cortex in executive control of memory retrieval

Abstract

Knowledge or experience is voluntarily recalled from memory by reactivation of the neural representations in the cerebral association cortex1,2,3,4. In inferior temporal cortex, which serves as the storehouse of visual long-term memory5,6,7,8, activation of mnemonic engrams through electric stimulation results in imagery recall in humans9, and neurons can be dynamically activated by the necessity for memory recall in monkeys10,11. Neuropsychological studies12 and previous split-brain experiments13 predicted that prefrontal cortex exerts executive control upon inferior temporal cortex in memory retrieval; however, no neuronal correlate of this process has ever been detected. Here we show evidence of the top-down signal from prefrontal cortex. In the absence of bottom-up visual inputs, single inferior temporal neurons were activated by the top-down signal, which conveyed information on semantic categorization imposed by visual stimulus–stimulus association. Behavioural performance was severely impaired with loss of the top-down signal. Control experiments confirmed that the signal was transmitted not through a subcortical but through a fronto-temporal cortical pathway. Thus, feedback projections from prefrontal cortex to the posterior association cortex2,3,14 appear to serve the executive control of voluntary recall.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design.
Figure 2: Neuronal activity in top-down condition.
Figure 3: Comparison before (left) and after (right) the full-split surgery.
Figure 4: Delay activity of inferior temporal neurons in top-down condition.

Similar content being viewed by others

References

  1. Goldman-Rakic,P. S. in Handbook of Physiology Vol. 5 (ed. Plum, F.) 373–417 (American Physiological Society, Bethesda, 1987).

    Google Scholar 

  2. Fuster,J. M. The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe 3rd edn (Lippincott-Raven, Philadelphia, 1997).

    Google Scholar 

  3. Petrides,M. in Handbook of Neuropsychology (eds Boller, F. & Grafman, J.) 9, 59–82 (Elsevier, Amsterdam, 1994).

    Google Scholar 

  4. Miyashita,Y. in The Cognitive Neurosciences 2nd edn (ed. Gazzaniga, M. S.) in the press (MIT Press, Cambridge, MA).

  5. Mishkin,M. A memory system in the monkey. Phil. Trans. R. Soc. Lond. B 298, 83–95 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Rolls,E. T. Neural organization of higher visual functions. Curr. Opin. Neurobiol. 1, 274–278 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Miyashita,Y. Inferior temporal cortex: where visual perception meets memory. Annu. Rev. Neurosci. 16, 245–263 (1993).

    Article  CAS  Google Scholar 

  8. Desimone,R. & Duncan,J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  CAS  Google Scholar 

  9. Penfield,W. & Perot,P. The brain's record of auditory and visual experience. Brain 86, 595–696 (1963).

    Article  CAS  Google Scholar 

  10. Sakai,K. & Miyashita,Y. Neural organization for the long-term memory of paired associates. Nature 354, 152–155 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Naya,Y., Sakai,K. & Miyashita,Y. Activity of primate inferotemporal neurons related to a sought target in pair-association task. Proc. Natl Acad. Sci. USA 93, 2664–2669 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Gazzaniga,M. S. Principles of human brain organization derived from split-brain studies. Neuron 14, 217–228 (1995).

    Article  CAS  Google Scholar 

  13. Hasegawa,I., Fukushima,T., Ihara,T. & Miyashita,Y. Callosal window between prefrontal cortices: cognitive interaction to retrieve long-term memory. Science 281, 814–818 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Chafee,M. V. & Goldman-Rakic,P. S. Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J. Neurophysiol. 79, 2919–2940 (1998).

    Article  CAS  Google Scholar 

  15. Eacott,M. J. & Gaffan,D. Interhemispheric transfer of visual learning in monkeys with intact optic chiasm. Exp. Brain Res. 74, 348–352 (1989).

    Article  CAS  Google Scholar 

  16. Sidtis,J. J., Volpe,B. T., Holtzman,J. D., Wilson,D. H. & Gazzaniga,M. S. Cognitive interaction after staged callosal section: evidence for transfer of semantic activation. Science 212, 344–346 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Gross,C. G., Bender,D. B. & Mishkin,M. Contributions of the corpus callosum and the anterior commissure to visual activation of inferior temporal neurons. J. Neurophysiol. 131, 227–239 (1977).

    CAS  Google Scholar 

  18. Doty,R. W., Ringo,J. L. & Lewine,J. D. Forebrain commissures and visual memory: a new approach. Behav. Brain Res. 29, 267–280 (1988).

    Article  CAS  Google Scholar 

  19. Felleman,D. J. & Van Essen,D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    Article  CAS  Google Scholar 

  20. Ringo,J. L. & O'Neill,S. G. Indirect inputs to ventral temporal cortex of monkey: the influence of unit activity of alerting auditory input, interhemispheric subcortical visual input, reward, and the behavioral response. J. Neurophysiol. 70, 2215–2225 (1993).

    Article  CAS  Google Scholar 

  21. Rainer,G., Rao,S. C. & Miller,E. K. Prospective coding for objects in primate prefrontal cortex. J. Neurosci. 19, 5493–5505 (1999).

    Article  CAS  Google Scholar 

  22. Goldman-Rakic,P. S. Regional and cellular fractionation of working memory. Proc. Natl Acad. Sci. USA 93, 13473–13480 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Buckner,R. L., Raichle,M. E., Miezin,F. M. & Petersen,S. E. Functional anatomic studies of memory retrieval for auditory words and visual pictures. J. Neurosci. 16, 6219–6235 (1996).

    Article  CAS  Google Scholar 

  24. Fletcher,P. C., Shallice,T., Frith,C. D., Frackowiak,R. S. & Dolan,R. J. The functional roles of prefrontal cortex in episodic memory. II. Retrieval. Brain 121, 1249–1256 (1998).

    Article  Google Scholar 

  25. Eacott,M. J. & Gaffan,D. Inferotemporal-frontal disconnection: the uncinatee fascicle and visual associative learning in monkeys. Eur. J. Neurosci. 4, 1320–1332 (1992).

    Article  Google Scholar 

  26. Gutnikov,S. A., Ma,Y. & Gaffan,D. Temporo-frontal disconnection impairs visual–visual paired association learning but not configural learning in Macaca monkeys. Eur. J. Neurosci. 9, 1524–1529 (1997).

    Article  CAS  Google Scholar 

  27. Fuster,J. M., Bauer,R. H. & Jervey,J. P. Functional interactions between inferotemporal and prefrontal cortex in a cognitive task. Brain Res. 330, 299–307 (1985).

    Article  CAS  Google Scholar 

  28. MacPherson,J. A. & Aldridge,J. W. A quantitative method of computer analysis of spike train data collected from behaving animals. Brain Res. 175, 183–187 (1979).

    Article  CAS  Google Scholar 

  29. Sary,G., Vogels,R. & Orban,G. A. Cue-invariant shape selectivity of macaque inferior temporal neurons. Science 260, 995–997 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Naya for technical advice. This work was supported by a grant-in-aid for Specially Promoted Research from the Ministry for Education, Science and Culture of Japan, a grant from the Magnetic Health Science Foundation (Y.M.) and a grant from the Ministry for Education, Science and Culture of Japan (I.H.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyoe Tomita or Yasushi Miyashita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomita, H., Ohbayashi, M., Nakahara, K. et al. Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature 401, 699–703 (1999). https://doi.org/10.1038/44372

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/44372

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing