Letter | Published:

Wave–particle duality of C60 molecules


Quantum superposition lies at the heart of quantum mechanics and gives rise to many of its paradoxes. Superposition of de Broglie matter waves1 has been observed for massive particles such as electrons2, atoms and dimers3, small van der Waals clusters4, and neutrons5. But matter wave interferometry with larger objects has remained experimentally challenging, despite the development of powerful atom interferometric techniques for experiments in fundamental quantum mechanics, metrology and lithography6. Here we report the observation of de Broglie wave interference of C60 molecules by diffraction at a material absorption grating. This molecule is the most massive and complex object in which wave behaviour has been observed. Of particular interest is the fact that C60 is almost a classical body, because of its many excited internal degrees of freedom and their possible couplings to the environment. Such couplings are essential for the appearance of decoherence7,8, suggesting that interference experiments with large molecules should facilitate detailed studies of this process.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    de Broglie,L. Waves and quanta. Nature 112, 540 (1923).

  2. 2

    Davisson,C. J. & Germer,L. H. The scattering of electrons by a single crystal of nickel. Nature 119, 558–560 (1927).

  3. 3

    Estermann,I. & Stern,O. Beugung von Molekularstrahlen. Z. Phys. 61, 95–125 (1930).

  4. 4

    Schöllkopf,W. & Toennies,J. P. Nondestructive mass selection of small van der Waals clusters. Science 266, 1345–1348 (1994).

  5. 5

    Halban, H. v. Jr & Preiswerk,P. Preuve expérimentale de la diffraction des neutrons. C.R. Acad. Sci. 203, 73–75 (1936).

  6. 6

    Berman,P. (ed.) Atom Interferometry (Academic, 1997).

  7. 7

    Zurek,W. H. Decoherence and the transition from quantum to classical. Phys. Today 36–44 (October 1991).

  8. 8

    Giulini,D. et al. Decoherence and the Appearance of the Classical World in Quantum Theory (Springer, Berlin, 1996).

  9. 9

    Kroto,H. W., Heath,J. R., O'Brien,S. C., Curl,R. F. & Smalley,R. E. C60: buckminsterfullerene. Nature 318, 162–166 (1985).

  10. 10

    Krätschmer,W., Lamb,L. D., Fostiropoulos,K. & Huffman,D. R. A new form of carbon. Nature 347, 354–358 (1990).

  11. 11

    Savas,T. A., Shah,S. N., Schattenburg,M. L., Carter,J. M. & Smith,H. I. Achromatic interferometric lithography for 100-nm-period gratings and grids. J. Vac. Sci. Technol. B 13, 2732–2735 (1995).

  12. 12

    Ding,D., Huang,J., Compton,R. N., Klots,C. E. & Haufler,R. E. cw laser ionization of C60 and C70. Phys. Rev. Lett. 73, 1084–1087 (1994).

  13. 13

    Scoles,G. (ed.) Atomic and Molecular Beam Methods Vol. 1 (Oxford Univ. Press, 1988).

  14. 14

    Born,M. & Wolf,E. Principles of Optics (Pergamon, Oxford, 1984).

  15. 15

    Grisenti,R. E., Schölkopf,W., Toennies,J. P., Hegerfeldt,G. C. & Köhler,T. Determination of atom-surface van der Waals potentials from transmission-grating diffraction intensities. Phys. Rev. Lett. 83, 1755–1758 (1999).

  16. 16

    Grisenti,R. E. et al. He atom diffraction from nanostructure transmission gratings: the role of imperfections. Phys. Rev. A (submitted).

  17. 17

    Joos,E. & Zeh,H. D. The emergence of classical properties through interaction with the environment. Z. Phys. B. 59, 223–243 (1985).

  18. 18

    Kolodney,E., Budrevich,A. & Tsipinyuk,B. Unimolecular rate constants and cooling mechanisms of superhot C60 molecules. Phys. Rev. Lett. 74, 510–513 (1995).

  19. 19

    Mitzner,R. & Campbell,E. E. B. Optical emission studies of laser desorbed C60. J. Chem. Phys. 103, 2445–2453 (1995).

  20. 20

    Pfau,T., Spälter,S., Kurtsiefer, Ch., Ekstrom,C. R. & Mlynek,J. Loss of spatial coherence by a single spontaneous emission. Phys. Rev. Lett. 73, 1223–1226 (1994).

  21. 21

    Clauser,J. F. & Li,S. “Heisenberg microscope” decoherence atom interferometry. Phys. Rev. A 50, 2430–2433 (1994).

  22. 22

    Chapman,M. S. et al. Photon scattering from atoms in an atom interferometer: Coherence lost and regained. Phys. Rev. Lett. 75, 3783–3787 (1995).

  23. 23

    Werner,S. A., Colella,R., Overhauser,A. W. & Eagen,C. F. Observation of the phase shift of a neutron due to precession in a magnetic field. Phys. Rev. Lett. 35, 1053–1055 (1975).

  24. 24

    Rauch,H. et al. Verification of coherent spinor rotation of fermions. Phys. Lett. A 54, 425–427 (1975).

  25. 25

    Clauser,J. F. in Experimental Metaphysics (eds Cohen, R. S., Home, M. & Stachel, J.) 1–11 (Kluwer Academic, Dordrecht, 1997).

  26. 26

    Arndt,M., Nairz,O., van der Zouw,G. & Zeilinger,A. in Epistemological and Experimental Perspectives on Quantum, Physics (eds Greenberger, D., Reiter, W. L. & Zeilinger, A.) 221–224 (IVC Yearbook, Kluwer Academic, Dordrecht, 1999).

Download references


We thank M. Haluška, H. Kuzmany, R. Penrose, P. Scheier, J. Schmiedmayer and G. Senn for discussions. This work was supported by the Austrian Science Foundation FWF, the Austrian Academy of Sciences, the TMR programme of the European Union, and the US NSF.

Author information

Correspondence to Anton Zeilinger.

Rights and permissions

Reprints and Permissions

About this article

Further reading

Figure 1: Diagram of the experimental set-up (not to scale).
Figure 2: Interference pattern produced by C60 molecules.


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.