Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unidirectional rotary motion in a molecular system


The conversion of energy into controlled motion plays an important role in both man-made devices and biological systems. The principles of operation of conventional motors are well established, but the molecular processes used by ‘biological motors’ such as muscle fibres, flagella and cilia1,2,3,4,5,6,7,8,9 to convert chemical energy into co-ordinated movement remain poorly understood10,11,12. Although ‘brownian ratchets’13,14,15,16 are known to permit thermally activated motion in one direction only, the concept of channelling random thermal energy into controlled motion has not yet been extended to the molecular level. Here we describe a molecule that uses chemical energy to activate and bias a thermally induced isomerization reaction, and thereby achieve unidirectional intramolecular rotary motion. The motion consists of a 120° rotation around a single bond connecting a three-bladed subunit to the bulky remainder of the molecule, and unidirectional motion is achieved by reversibly introducing a tether between the two units to energetically favour one of the two possible rotation directions. Although our system does not achieve continuous and fast rotation, the design principles that we have used may prove relevant for a better understanding of biological and synthetic molecular motors producing unidirectional rotary motion.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Compound 1, a triptycyl[4]helicene.
Figure 2: Schematic representation of the concepts underlying the design of the system.
Figure 3: Sequence of events in the chemically powered rotation of 2 to 7.
Figure 4
Figure 5: Spectroscopic evidence that carbonyl dichloride fuels the unidirectional rotation of 2.


  1. Rayment,I. et al. Structure of the actin-myosin complex and its implications for muscle contraction. Science 261, 58–65 (1993).

    ADS  CAS  Article  PubMed  Google Scholar 

  2. Abrahams,J. P., Leslie,A. G. W., Lutter,R. & Walker,J. E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).

    ADS  CAS  Article  PubMed  Google Scholar 

  3. Dominguez,R., Freyzon,Y., Trybus,K. M. & Cohen,C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94, 559–571 (1998).

    CAS  Article  PubMed  Google Scholar 

  4. Block,S. M. Real engines of creation. Nature 386, 217–219 (1997).

    ADS  CAS  Article  PubMed  Google Scholar 

  5. Noji,H., Yasuda,R., Yoshida,M. & Kinoshita, K. Jr Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997).

    ADS  CAS  Article  PubMed  Google Scholar 

  6. Boyer,P. D. The ATP synthase—a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749 (1997).

    CAS  Article  PubMed  Google Scholar 

  7. Shingyoji,C., Higuchi,H., Yoshimura,M., Katayama,E. & Yanagida,T. Dynein arms are oscillating force generators. Nature 393, 711–714 (1998).

    ADS  CAS  Article  PubMed  Google Scholar 

  8. Berg,H. C. Keeping up with F1-ATPase. Nature 394, 324–325 (1998).

    ADS  CAS  Article  PubMed  Google Scholar 

  9. Vale,R. D. & Oosawa,F. Protein motors and Maxwell's demons: does mechanochemical transduction involve a thermal ratchet? Adv. Biophys. 26, 97–134 (1990).

    CAS  Article  PubMed  Google Scholar 

  10. Stryer,L. in Biochemistry Ch. 15, 4th edn (W. H. Freeman, New York, 1995).

    Google Scholar 

  11. Howard,J. Molecular motors: structural adaptations to cellular functions. Nature 389, 561–567 (1997).

    ADS  CAS  Article  PubMed  Google Scholar 

  12. Huxley,A. How molecular motors work in muscle. Nature 391, 239–240 (1998).

    ADS  CAS  Article  PubMed  Google Scholar 

  13. Faucheux,L. P., Bourdieu,L. S., Kaplan,P. D. & Libchaber,A. J. Optical thermal ratchet. Phys. Rev. Lett. 74, 1504–1507 (1995).

    ADS  CAS  Article  PubMed  Google Scholar 

  14. Travis,J. Making light work of Brownian motion. Science 267, 1593–1594 (1995).

    ADS  CAS  Article  PubMed  Google Scholar 

  15. Astumian,R. D. Thermodynamics and kinetics of Brownian motion. Science 276, 917–922 (1997).

    CAS  Article  PubMed  Google Scholar 

  16. Rousselet,J., Salome,L., Ajdari,k A. & Prost,J. Directed motion of brownian particles induced by a periodic asymmetric potential. Nature 370, 446–448 (1994).

    ADS  CAS  Article  PubMed  Google Scholar 

  17. Mislow,K. Molecular machinery in organic chemistry. Chemtracts—Org. Chem. 2, 151–174 (1989).

    Google Scholar 

  18. Bedard,T. C. & Moore,J. S. Design and synthesis of molecular turnstiles. J. Am. Chem. Soc. 117, 10662–10671 (1995).

    CAS  Article  Google Scholar 

  19. Balzani,V., Gomez-Lopez,M. & Stoddard,J. F. Molecular machines. Acc. Chem. Res. 31, 405–414 (1998).

    CAS  Article  Google Scholar 

  20. Sauvage, J.-P. Transition metal-containing rotaxanes and catenanes in motion: toward molecular machines and motors. Acc. Chem. Res. 31, 611–619 (1998).

    Article  Google Scholar 

  21. Bissell,R. A., Cordova,E., Kaifer,A. & Stoddart,J. F. A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994).

    ADS  CAS  Article  Google Scholar 

  22. Benniston,A. C. & Harriman,A. A light-induced molecular shuttle based on a [2]rotaxane-derived triad. Angew. Chem. Int. Edn. Engl. 32, 1459–1461 (1993).

    Article  Google Scholar 

  23. Mao,C., Sun,W., Shen,Z. & Seeman,N. C. A nanomechanical device based on the B-Z transition of DNA. Nature 397, 144–146 (1999).

    ADS  CAS  Article  PubMed  Google Scholar 

  24. Kelly,T. R., Tellitu,I. & Sestelo,J. P. In search of molecular ratchets. Angew. Chem. Int. Edn. Engl. 36, 1866–1868 (1997).

    CAS  Article  Google Scholar 

  25. Kelly,T. R., Sestelo,J. P. & Tellitu,I. New molecular devices: in search of a molecular ratchet. J. Org. Chem. 63, 3655–3665 (1998).

    CAS  Article  Google Scholar 

  26. Davis,A. P. Tilting at windmills? The second law survives. Angew. Chem. Int. Edn. Engl. 37, 909–910 (1998).

    ADS  CAS  Article  Google Scholar 

  27. Musser,G. Taming Maxwell's demon. Sci. Am. 280, 24 (1999).

    Google Scholar 

  28. Kelly,T. R. et al. A molecular brake. J. Am. Chem. Soc. 116, 3657–3658 (1994).

    CAS  Article  Google Scholar 

Download references


We thank S. Jasmin and Y. Zhao for contributions to the preparation of necessary quantities of 2, and J. Sieglen and B. Wang for technical assistance. This work was supported by the NIH.

Author information

Authors and Affiliations


Corresponding author

Correspondence to T. Ross Kelly.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kelly, T., De Silva, H. & Silva, R. Unidirectional rotary motion in a molecular system. Nature 401, 150–152 (1999).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing