Salt enhances flavour by suppressing bitterness

Abstract

Salts are used as flavouring agents in the cuisines of many cultures1, the most commonly used being NaCl. They impart their own salty taste and enhance other flavours. The apparent ability to increase the intensity of other desirable flavours2,3 is puzzling as virtually all published psychophysical studies show that NaCl either suppresses or has no effect on other flavours3,4. To reconcile this contradiction we have proposed5 that salts selectively filter flavours, such that unpleasant tastes (such as bitterness) are more suppressed than palatable ones (such as sweetness) thereby increasing the salience and/or intensity of the latter. We now present evidence to support this idea.

Main

We used mixtures of aqueous solutions of a bitter substance, urea, which is strongly suppressed by sodium-containing compounds6; a sweetener, sucrose; and a salt, sodium acetate, which has a fairly mild taste6 and so is suitable for studying the flavour-modifying effects of sodium ions. Subjects (21 volunteers) were required to judge the extent of bitterness, sweetness and ‘otherness’ of all possible combinations of three concentrations of urea (0.0, 0.5, 1.0 M), four of sucrose (0.0, 0.1, 0.3, 0.5 M) and three of salt (0.0, 0.1, 0.3 M) using the method of magnitude estimation6. We evaluated the solutions, 12 per day (twice) over three consecutive days, in a counterbalanced order. Data were standardized and normalized6.

As predicted, there was a selective suppression of the taste components by sodium acetate (Fig. 1). The bitterness of urea was suppressed much more by the salt than was the sweetness of sucrose. Consequently, the sucrose-urea mixtures with added salt were relatively less bitter and more sweet than when sodium acetate was not added. Moreover, at the higher concentrations of sucrose (0.3, 0.5 M) and both concentrations of urea (0.5, 1.0 M), the absolute sweetness intensity was increased by adding either 0.1 or 0.3 M sodium acetate compared with when no sodium acetate was added (one example is shown in Fig. 1). This presumably occurred by releasing sweetness from suppression by the bitterness of urea7. As expected8, the addition of sodium acetate to sucrose in the absence of urea never had an enhancing effect on sweetness (data not shown).

Figure 1: The normalized reported magnitude of the taste of various solution mixtures is shown.
figure1

The intensity of urea and sucrose at the highest concentrations were roughly the same (left). Statistical analysis revealed that in mixtures, the highest concentrations of sucrose and urea (without sodium acetate), mutually and roughly equally suppressed their intensities (centre). When sodium acetate was added, also at the highest concentration, intensity of the bitterness greatly decreased, being suppressed by sodium ions6, whereas the sweetness intensity increased to levels that approximated the sweetness in pure deionized water (right). Relative to binary mixture levels, asterisk denotes increase (P<0.0001) and star denotes descrease (P<0.0001). These trends were evident for other concentrations tested. Detailed analyses availabel from the authors.

Although this simple three-component aqueous system does not fully mimic the complex food systems in which salts are used, it illustrates at least one mechanism by which a salt increases both the relative and absolute intensity of palatable components of foods. This mechanism has not commonly been considered in taste mixture studies, which have tended to concentrate either on two-component mixtures, or on complex foods where interpretations are difficult.

Our data show that, in addition to adding desired saltiness to food, salts potentiate flavour9 through the selective suppression of bitterness (and perhaps other undesirable flavours), and the release from suppression of palatable flavours such as sweetness. The desire for NaCl and other salts in foods as diverse as (often bitter) vegetables, oily foods and meats may be due in part to their ability to suppress unpleasant flavours10. This may explain why it is difficult to make low-sodium foods acceptable.

Biophysical evidence11 implies that it will be extremely difficult to develop a salty-tasting sodium-free substitute for NaCl. However, the multiple sensory functions of salts in foods should be considered, as the differential flavour-suppressing effect shown here might be duplicated by non-sodium substances, such as bitterness blockers.

References

  1. 1

    Denton, D. A. The Hunger for Salt (Springer, New York, 1982).

  2. 2

    Forsythe, R. H. & Miller, R. A. in Biological and Behavior Aspects of Salt Intake (eds Kare, M. R., Fregly, M. J. & Bernard, R. A.) 221-228 (Academic, New York, 1980).

  3. 3

    Gillette, M. Food Technol. 39, 47–56 (1985).

    Google Scholar 

  4. 4

    Breslin, P. A. S. Trends Food Sci. Technol. 7, 390–398 (1996).

    Google Scholar 

  5. 5

    Kemp, S. E. & Beauchamp, G. K. J. Food Sci. 59, 682–686 (1994).

    Google Scholar 

  6. 6

    Breslin, P. A. S. & Beauchamp, G. K. Chem. Senses 20, 609–623 (1995).

    Google Scholar 

  7. 7

    Lawless, H. T. J. Comp. Physiol. Psychol. 93, 538–547 (1979).

    Google Scholar 

  8. 8

    DeGraaf, C. & Frijters, J. E. R. Chem. Senses 14, 81–102 (1989).

    Google Scholar 

  9. 9

    Michell, A. R. Nutr. Res. Rev. 2, 149–160 (1989).

    Google Scholar 

  10. 10

    Woskow, M. H. Food Technol. 23, 1364–1369 (1969).

    Google Scholar 

  11. 11

    Brand, J. G. & Shah, P. S. in Physical Chemistry of Foods (eds Schwartzberg, H. & Hartel, R.) 517-540 (Marcel Dekker, New York, 1992).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Breslin, P., Beauchamp, G. Salt enhances flavour by suppressing bitterness. Nature 387, 563 (1997). https://doi.org/10.1038/42388

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing