Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single-species models for many-species food webs


Most species live in species-rich food webs; yet, for a century, most mathematical models for population dynamics have included only one or two species1,2,3. We ask whether such models are relevant to the real world. Two-species population models of an interacting consumer and resource collapse to one-species dynamics when recruitment to the resource population is unrelated to resource abundance, thereby weakening the coupling between consumer and resource4,5,6. We predict that, in nature, generalist consumers that feed on many species should similarly show one-species dynamics. We test this prediction using cyclic populations, in which it is easier to infer underlying mechanisms7, and which are widespread in nature8. Here we show that one-species cycles can be distinguished from consumer–resource cycles by their periods. We then analyse a large number of time series from cyclic populations in nature and show that almost all cycling, generalist consumers examined have periods that are consistent with one-species dynamics. Thus generalist consumers indeed behave as if they were one-species populations, and a one-species model is a valid representation for generalist population dynamics in many-species food webs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Cycles classified by period.


  1. 1

    Lotka, A. J. Elements of Physical Biology (Dover, New York, 1925, reprinted 1956)

    MATH  Google Scholar 

  2. 2

    Hassell, M. P., Lawton, J. H. & May, R. M. Patterns of dynamical behaviour in single species populations. J. Anim. Ecol. 45, 471–486 (1976)

    Article  Google Scholar 

  3. 3

    Gurney, W. S. C. & Nisbet, R. M. Ecological Dynamics (Oxford Univ. Press, New York, 1998)

    Google Scholar 

  4. 4

    McCauley, E., Nisbet, R. M., De Roos, A. M., Murdoch, W. W. & Gurney, W. S. C. Structured population models of herbivorous zooplankton. Ecol. Monogr. 66, 479–501 (1996)

    Article  Google Scholar 

  5. 5

    Persson, L. et al. Ontogenetic scaling of foraging rates and the dynamics of a size-structured consumer-resource model. Theor. Popul. Biol. 54, 270–293 (1998)

    CAS  Article  Google Scholar 

  6. 6

    Briggs, C. J., Nisbet, R. M. & Murdoch, W. W. Host age-specific parasitoid gain, delayed-feedback, and multiple attractors in a host-parasitoid model. J. Math. Biol. 38, 317–345 (1999)

    MathSciNet  Article  Google Scholar 

  7. 7

    Kendall, B. E. et al. Why do populations cycle? A synthesis of statistical and mechanistic modeling approaches. Ecology 80, 1789–1805 (1999)

    Article  Google Scholar 

  8. 8

    Kendall, B. E., Prendergast, J. & Bjornstad, O. N. The macroecology of population dynamics: taxonomic and biogeographic patterns in populations cycles. Ecol. Lett. 1, 160–164 (1998)

    Article  Google Scholar 

  9. 9

    Stenseth, N. C., Falck, W., Bjornstad, O. N. & Krebs, C. J. Population regulation in snowshoe hare and Canadian lynx: Asymmetric food web configurations between hare and lynx. Proc. Natl Acad. Sci. USA 94, 5147–5152 (1997)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Bjornstad, O. N., Sait, S. M., Stenseth, N. C., Thompson, D. J. & Begon, M. The impact of specialized enemies on the dimensionality of host dynamics. Nature 409, 1001–1006 (2001)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Gurney, W. S. C. & Nisbet, R. M. Fluctuation periodicity, generation separation, and the expression of larval competition. Theor. Popul. Biol. 28, 150–180 (1985)

    MathSciNet  Article  Google Scholar 

  12. 12

    Jones, A. E., Nisbet, R. M., Gurney, W. S. C. & Blythe, S. P. Period to delay ratio near stability boundaries for systems with delayed feedback. Math. Anal. Appl. 135, 354–368 (1988)

    MathSciNet  Article  Google Scholar 

  13. 13

    Blythe, S. P., Nisbet, R. M. & Gurney, W. S. C. Instability and complex dynamical behaviour in population models with long time delays. Theor. Popul. Biol. 22, 147–176 (1982)

    Article  Google Scholar 

  14. 14

    Higgins, K., Hastings, A. & Botsford, L. W. Density dependence and age structure: Nonlinear dynamics and population behaviour. Am. Nat. 149, 247–269 (1997)

    Article  Google Scholar 

  15. 15

    Nisbet, R. M. & Bence, J. R. Alternative dynamic regimes for canopy-forming kelp: A variant on density-vague population regulation. Am. Nat. 134, 377–408 (1989)

    Article  Google Scholar 

  16. 16

    Lauwerier, H. A. & Metz, J. A. J. Hopf bifurcation in host-parasitoid models. Inst. Math. Appl. J. Math. Appl. Med. Biol. 3, 191–210 (1986)

    MathSciNet  CAS  Article  Google Scholar 

  17. 17

    Nisbet, R. M. & Gurney, W. S. C. Modelling Fluctuating Populations (Wiley, New York, 1982)

    MATH  Google Scholar 

  18. 18

    NERC Centre for Population Biology, Imperial College The Global Population Dynamics Database, (NERC, Ascot 1999); available at

  19. 19

    Finerty, J. P. The Population Ecology of Cycles in Small Mammals: Mathematical Theory and Biological Fact (Yale Univ. Press, New Haven, 1980)

    Google Scholar 

  20. 20

    Lindstrom, E. R. et al. Disease reveals the predator: Sarcoptic mange, red fox predation, and prey populations. Ecology 75, 1042–1049 (1994)

    Article  Google Scholar 

  21. 21

    O'Donoghue, M., Boutin, S., Hofer, E. J. & Boonstra, R. in Ecosystem Dynamics of the Boreal Forest: the Kluane Project (eds Krebs, C. J., Boutin, S. & Boonstra, R.) 325–340 (Oxford Univ. Press, New York, 2001)

    Google Scholar 

  22. 22

    Bulmer, M. G. A statistical analysis of the 10-year cycle in Canada. J. Anim. Ecol. 43, 701–718 (1974)

    Article  Google Scholar 

  23. 23

    Berryman, A. A. What causes population cycles of forest Lepidoptera? Trends Ecol. Evol. 11, 28–32 (1996)

    CAS  Article  Google Scholar 

  24. 24

    Ginzburg, L. R. & Taneyhill, D. E. Population cycles of forest Lepidoptera: a maternal effect hypothesis. J. Anim. Ecol. 63, 79–92 (1994)

    Article  Google Scholar 

  25. 25

    Thomson, D. J. Spectrum estimation and harmonic analysis. Proc. IEEE 70, 1055–1096 (1982)

    ADS  Article  Google Scholar 

  26. 26

    Park, J., Lindberg, C. R. & Vernon, F. L. Multitaper spectral analysis of high-frequency spectrograms. J. Geophys. Res. 92, 12675–12684 (1987)

    ADS  Article  Google Scholar 

  27. 27

    Lees, J. M. & Park, J. Multiple-taper spectral analysis: a stand-alone C-subroutine. Comput. Geosci. 21, 199–236 (1995)

    ADS  Article  Google Scholar 

Download references


We thank C. Godfray for permission to analyse time series from the Global Population Dynamics Database (GPDD). We thank J. Fryxell, B.K. Gilbert, S. Henke, P.J. Hudson, C.J. Krebs, L. Oksanen, B. Sanderson, S. Taylor and M. Tewes for discussions on particular taxa, and J.A.J. Metz for discussions of cycle periods. The research was supported by grants from the NSF and United States Department of Agriculture (USDA).

Author information



Corresponding author

Correspondence to W. W. Murdoch.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Murdoch, W., Kendall, B., Nisbet, R. et al. Single-species models for many-species food webs. Nature 417, 541–543 (2002).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing