Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rapid regulation of steroidogenesis by mitochondrial protein import


Most mitochondrial proteins are synthesized on cytoplasmic ribosomes and imported into mitochondria1,2,3. The imported proteins are directed to one of four submitochondrial compartments—the outer mitochondrial membrane, the inner mitochondrial membrane, the intramembraneous space, or the matrix—where the protein then functions. Here we show that the steroidogenic acute regulatory protein (StAR), a mitochondrial protein required for stress responses, reproduction, and sexual differentiation of male fetuses4,5,6,7, exerts its activity transiently at the outer mitochondrial membrane rather than at its final resting place in the matrix. We also show that its residence time at this outer membrane and its activity are regulated by its speed of mitochondrial import. This may be the first example of a mitochondrial protein exerting its biological activity in a compartment other than that to which it is finally targeted. This system enables steroidogenic cells to initiate and terminate massive levels of steroidogenesis within a few minutes, permitting the rapid regulation of serum steroid hormone concentrations.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Affixing StAR to the outer mitochondrial membrane increases activity.
Figure 2: StAR is inactive in the intramembraneous space.
Figure 3: Association of StAR activity with mitochondrial import.
Figure 4: Full-length and N-62 StAR are equally active.


  1. Schatz, G. & Dobberstein, B. Common principles of protein translocation across membranes. Science 271, 1519–1526 (1996)

    ADS  CAS  Article  Google Scholar 

  2. Neupert, W. Protein import into mitochondria. Annu. Rev. Biochem. 66, 863–917 (1997)

    CAS  Article  Google Scholar 

  3. Bauer, M. F. & Neupert, W. Import of proteins into mitochondria: A novel pathomechanism for progressive neurodegeneration. J. Inher. Metab. Dis. 24, 166–180 (2001)

    CAS  Article  Google Scholar 

  4. Clark, B. J., Wells, J., King, S. R. & Stocco, D. M. The purification, cloning and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumour cells. Characterization of the steroidogenic acute regulatory protein (StAR). J. Biol. Chem. 269, 28314–28322 (1994)

    CAS  PubMed  Google Scholar 

  5. Lin, D. et al. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science 267, 1828–1831 (1995)

    ADS  CAS  Article  Google Scholar 

  6. Stocco, D. M. & Clark, B. J. Regulation of the acute production of steroids in steroidogenic cells. Endocr. Rev. 17, 221–244 (1996)

    CAS  PubMed  Google Scholar 

  7. Bose, H. S., Sugawara, T., Strauss, J. F. III & Miller, W. L. The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. N. Engl. J. Med. 335, 1870–1878 (1996)

    CAS  Article  Google Scholar 

  8. Miller, W. L. Molecular biology of steroid hormone synthesis. Endocr. Rev. 9, 295–318 (1988)

    CAS  Article  Google Scholar 

  9. Arakane, F. et al. Steroidogenic acute regulatory protein (StAR) retains activity in the absence of its mitochondrial targeting sequence: Implications for the mechanism of StAR action. Proc. Natl Acad. Sci. USA 93, 13731–13736 (1996)

    ADS  CAS  Article  Google Scholar 

  10. Kallen, C. B. et al. Steroidogenic acute regulatory protein (StAR) is a sterol transfer protein. J. Biol. Chem. 273, 26285–26288 (1998)

    CAS  Article  Google Scholar 

  11. Miller, W. L. & Strauss, J. F. III Molecular pathology and mechanism of action of the steroidogenic acute regulatory protein, StAR. J. Steroid Biochem. Mol. Biol. 69, 131–141 (1999)

    CAS  Article  Google Scholar 

  12. Bose, H. S., Whittal, R. M., Baldwin, M. A. & Miller, W. L. The active form of the steroidogenic acute regulatory protein, StAR, appears to be a molten globule. Proc. Natl Acad. Sci. USA 96, 7250–7255 (1999)

    ADS  CAS  Article  Google Scholar 

  13. Song, M., Shao, K., Mujeeb, A., James, T. L. & Miller, W. L. Molten globule structure and membrane binding of the N-terminal protease-resistant domain (63-193) of the steroidogenic acute regulatory protein (StAR). Biochem. J. 356, 151–158 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Christinsen, K., Bose, H. S., Harris, F. M., Miller, W. L. & Bell, J. D. Binding of StAR to synthetic membranes suggests an active molten globule. J. Biol. Chem. 276, 17044–17051 (2001)

    Article  Google Scholar 

  15. Tsujishita, Y. & Hurley, J. H. Structure and lipid transport mechanism of a StAR-related domain. Nature Struct. Biol. 7, 408–414 (2000)

    CAS  Article  Google Scholar 

  16. Harikrishna, J. A., Black, S. M., Szklarz, G. D. & Miller, W. L. Construction and function of fusion enzymes of the human cytochrome P450scc system. DNA Cell Biol. 12, 371–379 (1993)

    CAS  Article  Google Scholar 

  17. Abe, Y. et al. Structural basis of presequence recognition by the mitochondrial import receptor Tom20. Cell 100, 551–560 (2000)

    CAS  Article  Google Scholar 

  18. Jefcoate, C. R., Simpson, E. R. & Boyd, G. S. Spectral properties of rat adrenal-mitochondrial cytochrome P-450. Eur. J. Biochem. 42, 539–551 (1974)

    CAS  Article  Google Scholar 

  19. Toaff, M. E., Schleyer, H. & Strauss, J. F. III Metabolism of 25-hydroxycholesterol by rat luteal mitochondria and dispersed cells. Endocrinology 111, 1785–1790 (1982)

    CAS  Article  Google Scholar 

  20. Bose, H. S., Whittal, R. M., Huang, M. C., Baldwin, M. A. & Miller, W. L. N-218 MLN64, a protein with StAR-like steroidogenic activity is folded and cleaved similarly to StAR. Biochemistry 39, 11722–11731 (2000)

    CAS  Article  Google Scholar 

  21. Rapoport, D. & Neupert, W. Biogenesis of Tom40, core component of the Tom complex of mitochondria. J. Cell. Biol. 146, 321–331 (1999)

    Article  Google Scholar 

  22. Li, J. M. & Shore, G. C. Reversal of the orientation of an integral protein of the mitochondrial outer membrane. Science 256, 1815–1817 (1992)

    ADS  CAS  Article  Google Scholar 

  23. Meisinger, C. et al. Protein import channel of the outer mitochondrial membrane a highly stable Tom 40-Tom 20 core structure differentially interacts with preproteins, small Tom proteins and import receptors. Mol. Cell Biol. 21, 2337–2348 (2001)

    CAS  Article  Google Scholar 

  24. Regan, C. I. W. M., Darley-Usmar, V. M. & Lowe, P. N. in Mitochondria: A Practical Approach (eds Darly-Usmar, V. M., Rickwood, D. & Wilson, M. T.) 79–112 (IRL Press, Washington DC, 1987)

    Google Scholar 

  25. Artemenko, I. P., Zhao, D., Hales, D. B., Hales, K. H. & Jefcoate, C. R. Mitochondrial processing of newly synthesized steroidogenic acute regulatory protein (StAR), but not total StAR, mediates cholesterol transfer to cytochrome P450 side chain cleavage enzyme in adrenal cells. J. Biol. Chem. 276, 46583–46596 (2001)

    CAS  Article  Google Scholar 

  26. Bose, H. S., Baldwin, M. A. & Miller, W. L. Incorrect folding of steroidogenic acute regulatory protein (StAR) in congenital lipoid adrenal hyperplasia. Biochemistry 37, 9768–9775 (1998)

    CAS  Article  Google Scholar 

  27. Hurt, E. C., Pesold-Hurt, B., Suda, K., Oppliger, W. & Schatz, G. The first twelve amino acids (less than half of the pre-sequence) of an imported mitochondrial protein can direct mouse cytosolic dihydrofolate reductase into the yeast mitochondrial matrix. EMBO J. 4, 2061–2068 (1985)

    CAS  Article  Google Scholar 

  28. Chung, B., Matteson, K. J., Voutilainen, R., Mohandas, T. K. & Miller, W. L. Human cholesterol side-chain cleavage enzyme, P450scc: cDNA cloning, assignment of the gene to chromosome 15, and expression in the placenta. Proc. Natl Acad. Sci. USA 83, 8962–8966 (1986)

    ADS  CAS  Article  Google Scholar 

  29. Chuck, S. & Lingappa, V. Apolipoprotein B intermediates. Nature 356, 115–116 (1992)

    ADS  CAS  Article  Google Scholar 

  30. Luciano, P. et al. Functional reconstitution of the import of the yeast ADP/ATP carrier mediated by the TIM 10 complex. EMBO J. 20, 4099–4016 (2001)

    CAS  Article  Google Scholar 

Download references


We thank G. C. Shore for the Tom20 antiserum. This work was supported by the National Institutes of Health (H.B., V.R.L. and W.L.M.), the American Heart Association and the Sandler Foundation (V.R.L.), and the UCSF Academic Senate (W.L.M.).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Walter L. Miller.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bose, H., Lingappa, V. & Miller, W. Rapid regulation of steroidogenesis by mitochondrial protein import. Nature 417, 87–91 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing