The signature of supernova ejecta in the X-ray afterglow of the γ-ray burst 011211

Abstract

Now that γ-ray bursts (GRBs) have been determined to lie at cosmological distances1, their isotropic burst energies are estimated to be as high as 1054 erg (ref. 2), making them the most energetic phenomena in the Universe. The nature of the progenitors responsible for the bursts remains, however, elusive. The favoured models range from the merger of two neutron stars in a binary system3,4,5 to the collapse of a massive star6,7,8. Spectroscopic studies of the afterglow emission could reveal details of the environment of the burst, by indicating the elements present, the speed of the outflow and an estimate of the temperature. Here we report an X-ray spectrum of the afterglow of GRB011211, which shows emission lines of magnesium, silicon, sulphur, argon, calcium and possibly nickel, arising in metal-enriched material with an outflow velocity of the order of one-tenth the speed of light. These observations strongly favour models30 where a supernova explosion from a massive stellar progenitor precedes the burst event and is responsible for the outflowing matter.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The XMM-Newton spectrum of the afterglow of the γ-ray burst, GRB011211.
Figure 2: The XMM-Newton EPIC-PN spectrum of the burst afterglow, for the first 5 ks of exposure only.
Figure 3: The line flux of Si xiv Kα, and the total continuum flux (0.2–10 keV), as a function of time since the initial burst.

References

  1. 1

    Metzger, M. R. et al. Spectral constraints on the redshift of the optical counterpart to the γ-ray burst of 8 May 1997. Nature 387, 878–880 (1997)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Meszaros, P. Theories of gamma-ray bursts. Preprint astro-ph/0111170 at 〈http://xxx.lanl.gov〉 (2001).

  3. 3

    Paczynski, B. Gamma-ray bursters at cosmological distances. Astrophys. J. 308, L43–L46 (1986)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Eichler, D., Livio, M., Piran, T. & Schramm, D. N. Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars. Nature 340, 126–128 (1989)

    ADS  Article  Google Scholar 

  5. 5

    Mochkovitch, R., Hernanz, M., Isern, J. & Martin, X. Gamma-ray bursts as collimated jets from neutron star/black hole mergers. Nature 361, 236–238 (1993)

    ADS  Article  Google Scholar 

  6. 6

    Woosley, S. E. Gamma-ray bursts from stellar mass accretion disks around black holes. Astrophys. J. 405, 273–277 (1993)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Paczynski, B. Are gamma ray bursts in star-forming regions? Astrophys. J. 494, L45–L48 (1998)

    ADS  Article  Google Scholar 

  8. 8

    Fryer, C. L., Woosley, S. E. & Hartmann, D. H. Formation rates of black hole accretion disk gamma-ray bursts. Astrophys. J. 526, 152–177 (1999)

    ADS  Article  Google Scholar 

  9. 9

    Frontera, F. et al. GRB011211: BeppoSAX/GRBM data. GCN GRB Obs. Rep. No. 1215 (2001).

  10. 10

    Fruchter, A. et al. GRB 011211: Spectroscopy of the optical counterpart. GCN GRB Obs. Rep. No. 1200 (2001).

  11. 11

    Holland, S. et al. The optical afterglow of the gamma-ray burst GRB 011211. Astron J. (submitted); preprint astro-ph/0202309 at 〈http://xxx.lanl.gov〉 (2002).

  12. 12

    Burud, I. et al. GRB 011211: Detection of the probable host galaxy. GCN GRB Obs. Rep. No. 1213 (2001).

  13. 13

    Jansen, F. et al. XMM-Newton observatory. I. The spacecraft and operations. Astron. Astrophys. 365, L1–L6 (2001)

    ADS  Article  Google Scholar 

  14. 14

    Santos-Lleo, M., Loiseau, N., Rodriguez, P., Altieri, B. & Schartel, N. GRB 011211: XMM-Newton observation of GRB011211. GCN GRB Obs. Rep. No. 1192 (2001).

  15. 15

    Bevington, P. R. & Robinson, D. K. Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1992)

    Google Scholar 

  16. 16

    Mewe, R., Gronenschild, E. H. B. M. & van den Oord, G. H. J. Calculated X-radiation from optically thin plasmas. Astron. Astrophys. Suppl. 62, 197–254 (1985)

    ADS  CAS  Google Scholar 

  17. 17

    Ballantyne, D. R. & Ramirez-Ruiz, E. Iron Kα emission from X-ray reflection: Predictions for gamma-ray burst models. Astrophys. J. 559, L83–L87 (2001)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Kallman, T. R., Meszaros, P., Rees, M. J. Iron K lines from gamma ray bursts. Astrophys. J. (submitted); preprint astro-ph/0110654 at 〈http://xxx.lanl.gov〉 (2002).

  19. 19

    Rees, M. J. & Meszaros, P. Fe Kα emission from a decaying magnetar model of gamma-ray bursts. Astrophys. J. 545, L73–L75 (2000)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Frail, D. A. et al. Beaming in gamma-ray bursts: Evidence for a standard energy reservoir. Astrophys. J. 562, L55–L58 (2001)

    ADS  Article  Google Scholar 

  21. 21

    Piro, L. et al. Observation of X-ray lines from a gamma-ray burst (GRB991216): Evidence of moving ejecta from the progenitor. Science 290, 955–958 (2000)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Antonelli, L. A. et al. Discovery of a redshifted iron K line in the X-ray afterglow of GRB 000214. Astrophys. J. 545, L39–L42 (2000)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Piro, L. et al. Iron line signatures in X-ray afterglows of GRB by BeppoSAX. Astron. Astrophys. Suppl. 138, 431–432 (1999)

    ADS  Article  Google Scholar 

  24. 24

    McLaughlin, G. C., Wijers, R. A. M. J., Brown, G. E. & Bethe, H. A. Broad and shifted iron-group emission lines in gamma-ray bursts as tests of the hypernova scenario. Astrophys. J. (submitted); preprint astro-ph/0110614 at 〈http://xxx.lanl.gov〉 (2001).

  25. 25

    Weth, C., Meszaros, P., Kallman, T. & Rees, M. J. Early X-ray/ultraviolet line signatures of gamma-ray burst progenitors and hypernovae. Astrophys. J. 534, 581–586 (2000)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Wheeler, J. C., Yi, I., Hoeflich, P. & Wang, L. Asymmetric supernovae, pulsars, magnetars, and gamma-ray bursts. Astrophys. J. 537, 810–823 (2000)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Bulik, T., Belczynski, K. & Zbijewski, W. Distribution of compact object mergers around galaxies. Mon. Not. R. Astron. Soc. 309, 629–635 (1999)

    ADS  Article  Google Scholar 

  28. 28

    Hanlon, L. et al. ISO detection of a 60 μm source near GRB 970508. Astron. Astrophys. 359, 941–947 (2000)

    ADS  CAS  Google Scholar 

  29. 29

    Bloom, J. S. et al. The unusual afterglow of the γ-ray burst of 26 March 1998 as evidence for a supernova connection. Nature 401, 453–456 (1999)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Vietri, M. & Stella, L. Supranova events from spun-up neutron stars: an explosion in search of an observation. Astrophys. J. 527, L43–L46 (1999)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). We thank M. Rees, M. Davies, B. McBreen, R. Willingale and M. Barstow for critical reading of the manuscript, and for discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. N. Reeves.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reeves, J., Watson, D., Osborne, J. et al. The signature of supernova ejecta in the X-ray afterglow of the γ-ray burst 011211. Nature 416, 512–515 (2002). https://doi.org/10.1038/416512a

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing