Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Determining the composition of the Earth

Abstract

A long-standing question in the planetary sciences asks what the Earth is made of. For historical reasons, volatile-depleted primitive materials similar to current chondritic meteorites were long considered to provide the ‘building blocks’ of the terrestrial planets. But material from the Earth, Mars, comets and various meteorites have Mg/Si and Al/Si ratios, oxygen-isotope ratios, osmium-isotope ratios and D/H, Ar/H2O and Kr/Xe ratios such that no primitive material similar to the Earth's mantle is currently represented in our meteorite collections. The ‘building blocks’ of the Earth must instead be composed of unsampled ‘Earth chondrite’ or ‘Earth achondrite’.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The abundances of elements in the Earth's primitive upper mantle after core formation show a stair-step pattern.
Figure 2: The major-element composition of primitive material in the inner Solar System is not of uniform composition, but defines an unexplained trend.
Figure 3: Simplified oxygen-isotope plot of inner Solar System material, after refs 15 and 40–42.
Figure 4: 187Os/188Os ratios in carbonaceous, ordinary and enstatite chondrites, and in the Earth's primitive upper mantle.
Figure 5: The D/H ratios in H2O in three comets, meteorites, Earth, protosolar H2, and Mars19,28,29,44–46.

References

  1. Wänke, H. Constitution of terrestrial planets. Phil. Trans. R. Soc. Lond. 303, 287–302 (1981).

    ADS  Article  Google Scholar 

  2. Chou, C.-L. Fractionation of siderophile elements in the Earth's upper mantle. Proc. Lunar Planet. Sci. Conf. 9, 219–230 (1978).

    ADS  Google Scholar 

  3. Brearley, A. J. & Jones, R. H. in Planetary Materials. Reviews in Mineralogy Vol. 36 (ed. Papike, J. J.) 3-1–3-398 (The Mineralogical Society of America, Washington DC, 1998).

    Google Scholar 

  4. Brown, P. G. et al. The fall, recovery, orbit, and composition of the Tagish Lake meteorite: a new type of carbonaceous chondrite. Science 290, 320–325 (2000).

    ADS  CAS  Article  Google Scholar 

  5. Drake, M. J. Accretion and primary differentiation of the Earth: a personal journey. Geochim. Cosmochim. Acta 64, 2363–2370 (2000).

    ADS  CAS  Article  Google Scholar 

  6. Allegre, C. J., Poirer, J.-P., Humler, E. & Hofmann, A. W. The chemical composition of the Earth. Earth Planet. Sci. Lett. 134, 515–526 (1995).

    ADS  CAS  Article  Google Scholar 

  7. Anderson, D. L. Composition of the Earth. Science 243, 367–370 (1989).

    ADS  CAS  Article  Google Scholar 

  8. Wade, J. & Wood, B. J. The Earth's “missing” niobium may be in the core. Nature 409, 75–78 (2001).

    ADS  CAS  Article  Google Scholar 

  9. Drake, M. J., Newsom, H. E. & Capobianco, J. C. V, Cr, and Mn in the Earth, Moon, EPB, and SPB and the origin of the Moon: Experimental studies. Geochim. Cosmochim. Acta 53, 2101–2111 (1989).

    ADS  CAS  Article  Google Scholar 

  10. Wood, B. J. & Nell, J. High-temperature electrical conductivity of the lower-mantle phase (Mg,Fe)O. Nature 351, 309–311 (1991).

    ADS  CAS  Article  Google Scholar 

  11. Ito, E. & Takahashi, E. Post-spinel transformations in the system Mg2SiO4–Fe2SiO4 and some geophysical implications. J. Geophys. Res. 94, 10637–10646 (1989).

    ADS  Article  Google Scholar 

  12. Chopelas, A. & Boehler, R. Thermal expansivity in the lower mantle. Geophys. Res. Lett. 19, 1983–1986 (1992).

    ADS  Article  Google Scholar 

  13. Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A. & Schubert, G. Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earth's mantle. Nature 361, 699–704 (1993).

    ADS  Article  Google Scholar 

  14. Kellogg, L. H., Hager, B. H. & Van der Hilst, R. D. Compositional stratification in the deep mantle. Science 283, 1881–1884 (1999).

    ADS  CAS  Article  Google Scholar 

  15. Clayton, R. N. & Mayeda, T. K. Oxygen isotope signatures of hydration reactions in solar system materials. 11th Annu. V. M. Goldschmidt Conf. Abstr. no. 3648, LPI Contribution No. 1088 (Lunar and Planetary Institute, Houston, 2001).

  16. Cameron, A. G. W. in Origin of the Earth and Moon (eds Canup, R. M. & Righter, K.) 133–144 (Univ. Arizona Press, Tucson, 2000).

    Google Scholar 

  17. Canup, R. M. & Asphaug, E. The Moon-forming impact. Nature 412, 708–712 (2001).

    ADS  CAS  Article  Google Scholar 

  18. Weichert, U. et al. Oxygen isotope homogeneity of the Moon. Lunar Planet. Sci. Conf. 32, Abstr. no. 1669, LPI Contribution No. 1080 (Lunar and Planetary Institute, Houston, 2001).

  19. Owen, T. & Bar-nun, A. in Origin of the Earth and Moon (eds Canup, R. M. & Righter, K.) 459–471 (Univ. Arizona Press, Tucson, 2000).

    Google Scholar 

  20. Righter, K., Drake, M. J. & Yaxley, G. Prediction of siderophile element metal/silicate partition coefficients to 20 GPa and 2800 °C: the effects of pressure, temperature, oxygen fugacity, and silicate and metallic melt compositions. Phys. Earth Planet. Inter. 100, 115–134 (1997).

    ADS  CAS  Article  Google Scholar 

  21. Righter, K. & Drake, M. J. Metal/silicate equilibrium in a homogeneously accreting Earth: New results for Re. Earth Planet. Sci. Lett. 146, 541–554 (1997).

    ADS  CAS  Article  Google Scholar 

  22. Righter, K. & Drake, M. J. Effect of water on metal/silicate partitioning of moderately siderophile elements: a high pressure and temperature terrestrial magma ocean and core formation. Earth Planet. Sci. Lett. 171, 383–399 (1999).

    ADS  CAS  Article  Google Scholar 

  23. Righter, K. & Drake, M. J. Metal/silicate equilibrium in the early Earth—new constraints from volatile moderately siderophile elements. Geochim. Cosmochim. Acta 64, 3581–3507 (2000).

    ADS  CAS  Article  Google Scholar 

  24. Okuchi, T. Hydrogen partitioning into molten iron at high pressure: implications for Earth's core. Science 278, 1781–1784 (1997).

    ADS  CAS  Article  Google Scholar 

  25. Abe, Y., Ohtani, E., Okuchi, T., Righter, K. & Drake, M. J. in Origin of the Earth and Moon (eds Canup, R. M. & Righter, K.) 413–433 (Univ. Arizona Press, Tucson, 2000).

    Google Scholar 

  26. Morgan, J. W., Walker, R. J., Brandon, A. D. & Horan, M. F. Siderophile elements in earth's upper mantle and lunar breccias: data synthesis suggests manifestations of the same late influx. Meteor. Planet. Sci. 36, 1257–1275 (20001).

    ADS  Article  Google Scholar 

  27. Zinner, E. in Meteorites and the Early Solar System (ed. Kerridge, J.) 956–983 (Univ. Arizona Press, Tucson, 1988).

    Google Scholar 

  28. Lecluse, C. & Robert, F. Hydrogen isotope exchange reaction rates: origin of water in the inner solar system. Geochim. Cosmochim. Acta 58, 2927–2939 (1994).

    ADS  CAS  Article  Google Scholar 

  29. Deloule, E. & Robert, F. Instellar water in meteorites? Geochim. Cosmochim. Acta 59, 4695–4706 (1995).

    ADS  CAS  Article  Google Scholar 

  30. Stern, S. A. et al. The discovery of argon in Comet C/1995 01 (Hale-Bopp). Astrophys. J. 544, L169–L172 (2000).

    ADS  CAS  Article  Google Scholar 

  31. Swindle, T. D. & Kring, D. A. Implications of noble gas budgets for the origin of water in Earth and Mars. 11th Annu. V. M. Goldschmidt Conf. Abstr. no. 3785, LPI Contribution No. 1088 (Lunar and Planetary Institute, Houston, 2001).

  32. Feldman, P. D., Weaver, H. A. & Burgh, E. B. FUSE observations of CO and H2 emission in comet C/2001 A2 (LINEAR). Bull. Am. Astron. Soc. 33, 1120 (2001).

    ADS  Google Scholar 

  33. Morbidelli, A. et al. Source regions and timescales for delivery of water to the Earth. Meteor. Planet. Sci. 35, 1309–1320 (2000).

    ADS  CAS  Article  Google Scholar 

  34. Pepin, R. O. in Origin and Evolution of Planetary and Satellite Atmospheres (eds Atreya, S. K., Pollack, J. B. & Matthews, M. S.) 291–305 (Univ. Arizona Press, Tucson, 1989).

    Google Scholar 

  35. Jagoutz, E. et al. The abundances of major, minor and trace elements in the earth's mantle as derived from primitive ultramafic nodules. Proc. Lunar Planet. Sci. Conf. 10, 2031–2050 (1979).

    ADS  Google Scholar 

  36. Taylor, S. R. Solar System Evolution: A New Perspective (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

  37. Dreibus, G. et al. Relationship between rocks and soil at the Pathfinder landing site and the martian meteorites. Lunar Planet. Sci. Conf. [CD-ROM] 29, Abstr. no. 1348 (Lunar and Planetary Institute, Houston, 1998).

  38. Ringwood, A. E. Origin of the Earth and Moon (Springer, New York, 1979).

    Book  Google Scholar 

  39. Palme, H. & Nickel, K. G. Ca/Al ratio and composition of the Earth's primitive upper mantle. Geochim. Cosmochim. Acta 49, 2123–2132 (1986).

    ADS  Article  Google Scholar 

  40. Clayton, R. N. & Mayeda, T. K. Oxygen isotope studies in carbonaceous chondrites. Geochim. Cosmochim. Acta 63, 2089–2104 (1999).

    ADS  CAS  Article  Google Scholar 

  41. Clayton, R. N. Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21, 115–149 (1993).

    ADS  CAS  Article  Google Scholar 

  42. Clayton, R. N., Mayeda, T. K., Goswami, J. N. & Olsen, E. J. Oxygen isotope studies in ordinary chondrites. Geochim. Cosmochim. Acta 55, 2317–2337 (1991).

    ADS  CAS  Article  Google Scholar 

  43. Meisel, T., Walker, R. J., Irving, A. J. & Lorand, J.-P. Osmium isotopic compositions of mantle xenoliths: a global perspective. Geochim. Cosmochim. Acta 65, 1311–1323 (2001).

    ADS  CAS  Article  Google Scholar 

  44. Robert, F., Gautier, D. & Dubrulle, B. The solar system D/H ratio: Observations and theories. Space Sci. Rev. 92, 201–224 (2000).

    ADS  CAS  Article  Google Scholar 

  45. Deloule, E., Robert, F. & Doukhan, J. C. Interstellar hydroxyl in meteoritic chondrules: implications for the origin of water in the inner solar system. Geochim. Cosmochim. Acta 62, 3367–3378 (1998).

    ADS  CAS  Article  Google Scholar 

  46. Robert, F. The origin of water on Earth. Science 293, 1056–1058 (2001).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Supported by NASA and NSF. We thank D. Lauretta for comments. A review by T. Owen brought noble gas ratios in Solar System bodies to our attention. Discussions with H. McSween, D. Kring, R. Boehler, D. Mao, L. Stixrude, A. Morbidelli, J. Lunine, F. Robert and T. Swindle have been helpful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Drake.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Drake, M., Righter, K. Determining the composition of the Earth. Nature 416, 39–44 (2002). https://doi.org/10.1038/416039a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/416039a

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing