Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mid-mantle deformation inferred from seismic anisotropy

Abstract

With time, convective processes in the Earth's mantle will tend to align crystals, grains and inclusions. This mantle fabric is detectable seismologically, as it produces an anisotropy in material properties—in particular, a directional dependence in seismic-wave velocity. This alignment is enhanced at the boundaries of the mantle where there are rapid changes in the direction and magnitude of mantle flow1, and therefore most observations of anisotropy are confined to the uppermost mantle or lithosphere2,3 and the lowermost-mantle analogue of the lithosphere, the D″ region4. Here we present evidence from shear-wave splitting measurements for mid-mantle anisotropy in the vicinity of the 660-km discontinuity, the boundary between the upper and lower mantle. Deep-focus earthquakes in the Tonga–Kermadec and New Hebrides subduction zones recorded at Australian seismograph stations record some of the largest values of shear-wave splitting hitherto reported. The results suggest that, at least locally, there may exist a mid-mantle boundary layer, which could indicate the impediment of flow between the upper and lower mantle in this region.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Event–station combinations used to study mid-mantle anisotropy.
Figure 2: Shear-wave splitting versus epicentral distance.
Figure 3: Three models for anisotropy below the 660-km discontinuity.

References

  1. Montagner, J.-P. Where can seismic anisotropy be detected in the Earth's mantle? In boundary layers .... Pure Appl. Geophys. 151, 223–256 (1998).

    Article  ADS  Google Scholar 

  2. Silver, P. G. Seismic anisotropy beneath the continents: Probing the depths of geology. Annu. Rev. Earth Planet Sci. 24, 385–432 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Savage, M. K. Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Rev. Geophys. 37, 65–106 (1999).

    Article  ADS  Google Scholar 

  4. Kendall, J.-M. & Silver, P. G. in The Core-Mantle Boundary Region (eds Gurnis, M., Wysession, M., Knittle, E. & Buffett, B.) 97–118 (Geodynamics series 28, American Geophysical Union, Washington DC, 1998).

    Book  Google Scholar 

  5. Karato, S. & Wu, P. Rheology of the upper mantle: A synthesis. Science 260, 771–778 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Vinnik, L. P. & Montagner, J.-P. Shear wave splitting in the mantle Ps phase. Geophys. Res. Lett. 23, 2449–2452 (1996).

    Article  ADS  Google Scholar 

  7. Vinnik, L. P., Chevrot, S. & Montagner, J.-P. Seismic evidence of flow at the base of the upper mantle. Geophys. Res. Lett. 25, 1995–1998 (1998).

    Article  ADS  Google Scholar 

  8. Tong, C., Gudmundsson, O. & Kennett, B. L. N. Shear wave splitting in refracted waves returned from the upper mantle transition zone beneath northern Australia. J. Geophys. Res. 99, 15783–15797 (1994).

    Article  ADS  Google Scholar 

  9. Fouch, M. J. & Fischer, K. M. Mantle anisotropy beneath northwest Pacific subduction zone. J. Geophys. Res. 101, 15987–16002 (1996).

    Article  ADS  Google Scholar 

  10. Fischer, K. & Wiens, D. The depth distribution of mantle anisotropy beneath the Tonga subduction zone. Earth Planet. Sci. Lett. 142, 253–260 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Montagner, J.-P. & Kennett, B. L. N. How to reconcile body-wave and normal-mode reference Earth models. Geophys. J. Int. 125, 229–248 (1996).

    Article  ADS  Google Scholar 

  12. Barruol, G. & Hoffmann, R. Upper mantle anisotropy beneath Geoscope stations. J. Geophys. Res. 104, 10757–10773 (1999).

    Article  ADS  Google Scholar 

  13. Clitheroe, G. & Van der Hilst, R. in Structure and Evolution of the Australian Continent (ed. Braun, J. et al.) 73–78 (Geodynamics series 26, American Geophysical Union, Washington DC, 1998).

    Book  Google Scholar 

  14. Özalaybey, S. & Chen, W. Frequency dependent analysis of SKS/SKKS waveforms observed in Australia: evidence for null birefringence. Phys. Earth Planet. Inter. 114, 197–210 (1999).

    Article  ADS  Google Scholar 

  15. Silver, P. G. & Chan, W. W. Implications for continental structure and evolution from seismic anisotropy. Nature 335, 34–39 (1988).

    Article  ADS  Google Scholar 

  16. Wolfe, C. J. & Silver, P. G. Seismic anisotropy of oceanic upper mantle: Shear-wave splitting methodologies and observations. J. Geophys. Res. 103, 749–771 (1998).

    Article  ADS  Google Scholar 

  17. Kendall, J.-M. & Thomson, C. J. Seismic modelling of subduction zones with inhomogeneity and anisotropy, I: Teleseismic P-wavefront geometry. Geophys. J. Int. 112, 39–66 (1993).

    Article  ADS  Google Scholar 

  18. Kirby, S. H., Durham, W. B. & Stern, L. A. Mantle phase changes and deep-earthquake faulting in subducting lithosphere. Science 252, 216–225 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Anderson, D. L. Thermally induced phase changes, lateral heterogeneity of the mantle, continental roots and deep slab anomalies. J. Geophys. Res. 92, 13968–13980 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Mainprice, D., Barruol, G. & Ismaı¨l, W. B. in Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale (eds Karato, S., Fortre, A., Masters, T. G. & Stixrude, L.) 237–264 (Geophysical Monographs 117, American Geophysical Union, Washington DC, 2000).

    Book  Google Scholar 

  21. Karato, S., Dupas-Bruzek, C. & Rubie, D. Plastic deformation of silicate spinel under the transition-zone conditions of the Earth's mantle. Nature 395, 266–269 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Meade, C. P., Silver, P. G. & Kaneshima, S. Laboratory and seismological observations of lower mantle isotropy. Geophys. Res. Lett. 22, 1293–1296 (1995).

    Article  ADS  Google Scholar 

  23. Yeganeh-Haeri, A. Synthesis and re-investigation of the elastic properties of single-crystal magnesium silicate perovskite. Phys. Earth Planet. Inter. 87, 111–121 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Oganov, A. R., Brodholt, J. P. & Price, G. D. The elastic constants of MgSiO3 perovskite at pressures and temperatures of the Earth's mantle. Nature 411, 934–937 (2001).

    Article  ADS  CAS  Google Scholar 

  25. Stixrude, L. in The Core-Mantle Boundary Region (eds Gurnis, M., Wysession, M., Knittle, E. & Buffett, B.) 83–96 (Geodynamics series 28, American Geophysical Union, Washington DC, 1998).

    Book  Google Scholar 

  26. Gaherty, J. B. & Jordan, T. H. Lehmann discontinuity as the base of an anisotropic layer beneath continents. Science 268, 1468–1471 (1995).

    Article  ADS  CAS  Google Scholar 

  27. Kusznir, N. J. Subduction body force stresses and viscosity structure at the 410 km and 660 km phase transitions. Eos 81, 1081 (2000).

    Google Scholar 

  28. Ringwood, A. E. Role of the transition zone and 660 km discontinuity in mantle dynamics. Phys. Earth Planet. Inter. 86, 5–24 (1994).

    Article  ADS  CAS  Google Scholar 

  29. Mitrovica, J. X. & Forte, A. M. Radial profile of mantle viscosity: Results from the joint inversion of convection and postglacial rebound observations. J. Geophys. Res. 102, 2751–2769 (1997).

    Article  ADS  Google Scholar 

  30. Hirose, K., Fei, Y., Ma, Y. & Mao, H.-K. The fate of subducted basaltic crust in the Earth's lower mantle. Nature 397, 53–56 (1999).

    Article  ADS  CAS  Google Scholar 

  31. Widiyantoro, S., Kennett, B. L. N. & Van der Hilst, R. Seismic tomography with P and S data reveals lateral variations in the rigidity of deep slabs. Earth Planet. Sci. Lett. 173, 91–100 (1999).

    Article  ADS  CAS  Google Scholar 

  32. Van der Hilst, R. Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench. Nature 374, 154–157 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Fischer, G. Houseman and M. Casey for comments on the manuscript, and K. Fischer for suggesting alternative models to test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-Michael Kendall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wookey, J., Kendall, JM. & Barruol, G. Mid-mantle deformation inferred from seismic anisotropy. Nature 415, 777–780 (2002). https://doi.org/10.1038/415777a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415777a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing