Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Orbitally paced climate oscillations across the Oligocene/Miocene boundary

Abstract

The late Oligocene and early Miocene periods, some 21 to 27 million years ago, have generally been viewed as times of moderate global warmth and ice-free conditions. Yet several lines of evidence suggest that this interval was punctuated by at least one, and possibly several, episodes of high-latitude cooling and continental glaciation1,2,3. Here, we present stable-isotope and per cent coarse-fraction data from an equatorial, western Atlantic deep-sea-sediment core that provide high-resolution records of the climate variability across the Oligocene/Miocene transition (22.5–25.7 million years ago). A strong 40-kyr periodicity in the oxygen isotope record is consistent with a high-latitude orbital (obliquity) control on ice-volume and temperature. Orbital influences are also apparent at precession and eccentricity frequencies, including a series of 400-kyr oscillations that culminate in distinct maxima at the Oligocene/Miocene boundary, about 23.7 million years ago. Covariance between the carbon and oxygen isotope records suggests that the oceanic carbon cycle may have contributed to global cooling during the 400-kyr cycles, particularly at the Oligocene/Miocene boundary.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Benthic foraminifer stable-isotope and % coarse fraction (%CF) records for Hole 929A plotted versus age.
Figure 2: Power spectra (variance versus frequency) of three variables, the benthic δ18O and δ13C, and %CF values.
Figure 3: Top panels, coherence spectra of the δ13C (panel a) and %CF (panel b) time series relative to δ18O (solid lines).

Similar content being viewed by others

References

  1. Leckie, R. M. & Webb, P. N. Late Oligocene-early Miocene glacial record of the Ross Sea, Antarctica: evidence from DSDP Site 270. Geology 11, 578–582 (1983).

    Article  ADS  Google Scholar 

  2. Miller, K. G., Wright, J. D. & Fairbanks, R. G. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustacy and margin erosion. J. Geophys. Res. 96, 6829–6848 (1991).

    Article  ADS  Google Scholar 

  3. Wright, J. D. & Miller, K. G. Miocene stable isotope stratigraphy, Site 747, Kerguelen Plateau. Proc. ODP Sci. Res. 120, 855–866 (1992).

    CAS  Google Scholar 

  4. Stott, L. D., Kennett, J. P., Shackleton, N. J. & Corfield, R. M. The evolution of Antarctic surface waters during the Paleogene, inferences from the stable isotopic composition of planktonic foraminifera. Proc. ODP Sci. Res. 113, 849–864 (1990).

    Google Scholar 

  5. Curry, W. B.et al. Init. Rep. ODP A 154, (1995).

    Google Scholar 

  6. Weedon, G. P., Shackleton, N. J. & Pearson, P. N. The Oligocene time scale and cyclostratigraphy on the Ceara Rise, Western Equatorial Atlantic. Proc. ODP Sci. Res.(in the press).

  7. Flower, B. P., Zachos, J. C. & Paul, H. Milankovitch-scale variability recorded near the Oligocene/Miocene Boundary: Hole 929A. Proc. ODP Sci. Res.(in the press).

  8. Berggren, W. A.et al. in Geochronology, Time Scales and Global Stratigraphic Correlation(eds Berggren, W. A., Kent, D. V., Aubry, M.-P. & Hardenbol, J.) 129–212 (Spec. Publ. 54, Soc. Econ. Paleontol. Mineral., Tulsa, OK, (1995)).

    Book  Google Scholar 

  9. Jenkins, G. M. & Watts, D. G. Spectral Analysis and its Applications(Holden-Day, San Francisco, (1968)).

    MATH  Google Scholar 

  10. Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 m.y. Quat. Sci. Rev. 10, 297–317 (1991).

    Article  ADS  Google Scholar 

  11. Pisias, N. G., Shackleton, N. J. & Hall, M. A. Stable isotope and calcium carbonate records from hydraulic piston cored Hole 574A: high-resolution records from the middle Miocene. Init. Repts DSDP 85, 735–748 (1985).

    CAS  Google Scholar 

  12. Zachos, J. C., Quinn, T. M. & Salamy, K. Earliest Oligocene climate transition: Constraints from high resolution (104 yr) deep-sea foraminiferal δ18O and δ13C time series. Paleoceanography 11, 251–266 (1996).

    Article  ADS  Google Scholar 

  13. Wu, G., Herguera, J. C. & Berger, W. H. Differential dissolution, modification of late Pleistocene oxygen isotope records in the western equatorial Pacific. Paleoceanography 5, 581–594 (1990).

    Article  ADS  Google Scholar 

  14. Bassinot, F. C.et al. Coarse fraction fluctuations in pelagic carbonate sediments from the tropical Indian Ocean: A 1500-kyr record of carbonate dissolution. Paleoceanography 9, 579–600 (1994).

    Article  ADS  Google Scholar 

  15. Curry, W. B., Duplessy, J. C., Labeyrie, L. D., Oppo, D. & Kallel, N. P. Changes in the distribution of δ13C of ΣCO2 between the last glaciation and the Holocene. Paleoceanography 3, 317–342 (1988).

    Article  ADS  Google Scholar 

  16. Wright, J. D. & Miller, K. G. in The Antarctic Paleoenvironment: A Perspective on Global Change(eds Kennett, J. P. & Warnke, D. A.) 141–165 (Antarctic Res. Ser. 56, Am. Geophys. Un., Washington DC, (1993)).

    Google Scholar 

  17. Barrett, P. J. (ed.) Antarctic Cenozoic History From CIROS-1 Drill Hole McMurdo Sound. NZ DSIR Bull. 245, 1–251 (1989).

    Google Scholar 

  18. Haq, B. U., Hardenbol, J. & Vail, P. R. Chronology of fluctuating sea levels since the Triassic. Science 235, 1156–1167 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Miller, K. G.et al. Drilling and dating New Jersey Oligocene-Miocene sequences; ice volume, global sea level, and Exxon records. Science 271, 1092–1095 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Clemens, S. C. & Tiedemann, R. Eccentricity forcing of Pliocene–Early Pleistocene climate revealed in a marine oxygen isotope record. Nature 385, 801–804 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Mix, A. C.et al. Benthic Foraminifer stable isotope record from Site 849, 0–5 Ma: Local and global climate changes. Proc. ODP Sci. Res. 138, 371–412 (1995).

    Google Scholar 

  22. Diester-Haass, L. & Zahn, R. Eocene-Oligocene transition in the Southern Ocean: History of water mass circulation and biological productivity. Geology 24, 163–166 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Woodruff, F. & Savin, S. M. Mid-Miocene isotope stratigraphy in the deep sea: high-resolution correlations, paleoclimatic cycles, and sediment preservation. Paleoceanography 6, 755–806 (1991).

    Article  ADS  Google Scholar 

  24. Flower, B. P. & Kennett, J. P. Middle Miocene deepwater paleoceanography in the southwest Pacific: Relations with east Antarctic ice sheet development. Paleoceanography 10, 1095–1113 (1995).

    Article  ADS  Google Scholar 

  25. Flower, B. P. & Kennett, J. P. Middle Miocene ocean/climate transition: High-resolution oxygen and carbon isotopic records from DSDP Site 588A, Southwest Pacific. Paleoceanography 8, 811–843 (1993).

    Article  ADS  Google Scholar 

  26. Shackleton, N. J. Marine Petroleum Source Rocks(eds Brooks, J. et al.) 423–434 (Spec. Publ. 26, Geol. Soc., London, (1987)).

    Google Scholar 

Download references

Acknowledgements

We thank S. Clemens, P. DeMenocal, P. Koch, N. Shackleton, J. Revenaugh and Q.Williams for comments and discussion; K. Vencil for technical assistance; and S. D'Hondt, L. Hinnov and K. Miller for reviews that significantly improved the manuscript. Samples for this project were provided by the Ocean Drilling Program. This work was supported by the USSSP and NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Zachos.

Supplementary information

Supplementary Image

Coherency spectrum based on a linear regression fit to 6 upper Oligocene and lower Miocene microfossil datums (JPG 93 kb)

Supplementary Information

Information on the Hole 929A time seriesanalytical work and age model (DOC 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zachos, J., Flower, B. & Paul, H. Orbitally paced climate oscillations across the Oligocene/Miocene boundary. Nature 388, 567–570 (1997). https://doi.org/10.1038/41528

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/41528

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing