Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stage-specific control of neuronal migration by somatostatin

Abstract

Developing neurons transiently express somatostatin and its receptors1,2,3, but little is known about their function at these early stages. As we thought that endogenous somatostatin might control the migratory behaviour of immature neurons, we have examined the effects of somatostatin in cerebellar granule cells of early postnatal mice, because these cells express all five types of somatostatin receptors before the initiation of their migration4,5. Here we show that somatostatin has opposite and stage-specific effects on the migration of cerebellar granule cells. Activation of somatostatin receptors increases the rate of granule cell migration near their birthplace, but decreases the rate near their final destination. Furthermore, somatostatin enhances the size and frequency of spontaneous Ca2+ fluctuations in the early phase of migration, whereas it eliminates spike-like Ca2+ transients in the late phase. Somatostatin-induced changes at both early and late phases are reversed by a blockade of K+ channel activity. These results indicate that somatostatin may provide an essential cue for accelerating the movement of granule cells in the early phase and for terminating the movement in the late phase through altering intracellular Ca2+ concentrations and K+ channel activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of somatostatin (SST-28) in the cerebellum.
Figure 2: Role of somatostatin on granule cell migration in different cortical layers.
Figure 3: Effect of a somatostatin antagonist, AC-178,335 (10 µM), on granule cell migration.
Figure 4: Somatostatin alters granule cell migration in the microexplant cultures.

Similar content being viewed by others

References

  1. Gonzalez, B. J. et al. Transient expression of somatostatin receptors in the rat cerebellum during development. Dev. Brain Res. 40, 154–157 (1988).

    Article  Google Scholar 

  2. Inagaki, S. et al. In situ hybridization analysis of the somatostatin-containing neuron system in developing cerebellum of rats. Mol. Brain Res. 6, 289–295 (1989).

    Article  CAS  Google Scholar 

  3. Maubert, E. et al. Developmental patterns of somatostatin-receptors and somatostatin-immunoreactivity during early neurogenesis in the rat. Neuroscience 62, 317–325 (1994).

    Article  CAS  Google Scholar 

  4. Thoss, V. S., Duc, D. & Hoyer, D. Somatostatin receptors in the developing rat brain. Eur. J. Pharmacol. 297, 145–155 (1996).

    Article  CAS  Google Scholar 

  5. Viollet, C. et al. Differential expression of multiple somatostatin receptors in the rat cerebellum during development. J. Neurochem. 68, 2263–2272 (1997).

    Article  CAS  Google Scholar 

  6. Schinder, M., Humphrey, P. P. A. & Emson, P. C. Somatostatin receptors in the central nervous system. Prog. Neurobiol. 50, 9–47 (1996).

    Article  Google Scholar 

  7. Villar, M. J., Hokfelt, T. & Brown, J. C. Somatostatin expression in the cerebellar cortex during postnatal development. Anat. Embryol. 179, 257–267 (1989).

    Article  CAS  Google Scholar 

  8. Komuro, H. & Rakic, P. Dynamics of granule cell migration: A confocal microscopic study in acute cerebellar slice preparations. J. Neurosci. 15, 1110–1120 (1995).

    Article  CAS  Google Scholar 

  9. Komuro, H. & Rakic, P. Distinct modes of neuronal migration in different domains of developing cerebellar cortex. J. Neurosci. 18, 1478–1490 (1998).

    Article  CAS  Google Scholar 

  10. Komuro, H., Yacubova, E., Yacubova, E. & Rakic, P. Mode and tempo of tangential cell migration in the cerebellar external granular layer. J. Neurosci. 21, 527–540 (2001).

    Article  CAS  Google Scholar 

  11. Baumbach, W. R. et al. A linear hexapeptide somatostatin antagonist blocks somatostatin activity in vitro and influences growth hormone release in rats. Mol. Pharmacol. 54, 864–873 (1998).

    Article  CAS  Google Scholar 

  12. Nagata, I. & Nakatsuji, N. Granule cell behavior on laminin in cerebellar microexplant cultures. Dev. Brain Res. 52, 63–73 (1990).

    Article  CAS  Google Scholar 

  13. Komuro, H. & Rakic, P. Intracellular Ca2+ fluctuations modulate the rate of neuronal migration. Neuron 17, 275–285 (1996).

    Article  CAS  Google Scholar 

  14. Miale, I. L. & Sidman, R. L. An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp. Neurol. 4, 277–296 (1961).

    Article  CAS  Google Scholar 

  15. Kuhar, S. G. et al. Changing patterns of gene expression define four stages of cerebellar granule neuron differentiation. Development 117, 97–104 (1993).

    CAS  PubMed  Google Scholar 

  16. Reisine, T. & Bell, G. I. Molecular biology of somatostatin receptors. Endocr. Rev. 16, 427–442 (1995).

    CAS  PubMed  Google Scholar 

  17. Patel, Y. C. Molecular pharmacology of somatostatin receptor subtypes. J. Endocrinol. Invest. 20, 348–367 (1997).

    Article  CAS  Google Scholar 

  18. Ikeda, S. R. & Schofield, G. G. Somatostatin blocks a calcium current in rat sympathetic ganglion neuron. J. Physiol. (Lond.) 409, 221–240 (1989).

    Article  CAS  Google Scholar 

  19. Gonzalez, B. J. et al. Somatostatin receptors are expressed by immature cerebellar granule cells: Evidence for a direct inhibitory effect of somatostatin on neuroblast activity. Proc. Natl Acad. Sci. USA 89, 9627–9631 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Komuro, H. & Rakic, P. Selective role of N-type calcium channels in neuronal migration. Science 257, 806–809 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Komuro, H. & Rakic, P. Modulation of neuronal migration by NMDA receptors. Science 260, 95–97 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Sims, S. M., Lussier, B. T. & Kraicer, J. Somatostatin activates an inwardly rectifying K+ conductance in freshly dispersed rat somatotrops. J. Physiol. (Lond.) 441, 615–637 (1991).

    Article  CAS  Google Scholar 

  23. Hendriks, R., Morest, D. K. & Kaczmarek, L. K. Role of neuronal cell migration for high-threshold potassium currents in the chicken hindbrain. J. Neurosci. Res. 58, 805–814 (1999).

    Article  CAS  Google Scholar 

  24. Shibata, R. et al. A-type K+ current mediated by the Kv4 channel regulates the generation of action potential in developing cerebellar granule cells. J. Neurosci. 20, 4145–4155 (2000).

    Article  CAS  Google Scholar 

  25. D'Angelo, E., De Filippi, G., Rossi, P. & Taglietti, V. Synaptic activation of Ca2+ action potentials in immature rat cerebellar granule cells in situ. J. Neurophysiol. 78, 1631–1642 (1997).

    Article  CAS  Google Scholar 

  26. Bologna, E. & Leroux, P. Identification of multiple somatostatin receptors in the rat somatosensory cortex during development. J. Comp. Neurol. 420, 466–480 (2000).

    Article  CAS  Google Scholar 

  27. Taniwaki, T. & Schwartz, J. P. Somatostatin enhances neurofilament expression and neurite outgrowth in cultured rat cerebellar granule cells. Dev. Brain Res. 88, 109–116 (1995).

    Article  CAS  Google Scholar 

  28. Rhie, D.-J. et al. Somatostatin potentiates voltage-dependent K+ and Ca2+ channels expression induced by nerve growth factor in PC12 cells. Dev. Brain Res. 112, 267–274 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Wikler, M. Perin and P. Rakic for critically reading the manuscript. We also thank E. Yacubova and J. Neffenger for technical help and manuscript preparation. This work was supported by the Cleveland Clinic Foundation (H.K).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yacubova, E., Komuro, H. Stage-specific control of neuronal migration by somatostatin. Nature 415, 77–81 (2002). https://doi.org/10.1038/415077a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415077a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing