Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conserved signals and machinery for RNA transport in Drosophila oogenesis and embryogenesis

Abstract

Localization of cytoplasmic messenger RNA transcripts is widely used to target proteins within cells. For many transcripts, localization depends on cis-acting elements within the transcripts and on microtubule-based motors; however, little is known about other components of the transport machinery or how these components recognize specific RNA cargoes. Here, we show that in Drosophila the same machinery and RNA signals drive specific accumulation of maternal RNAs in the early oocyte and apical transcript localization in blastoderm embryos. We demonstrate in vivo that Egalitarian (Egl) and Bicaudal D (BicD), maternal proteins required for oocyte determination, are selectively recruited by, and co-transported with, localizing transcripts in blastoderm embryos, and that interfering with the activities of Egl and BicD blocks apical localization. We propose that Egl and BicD are core components of a selective dynein motor complex that drives transcript localization in a variety of tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization of zygotic and maternal transcripts in blastoderm embryos.
Figure 2: Conservation of RNA localization signals during oogenesis and embryogenesis.
Figure 3: Colocalization of Egl, BicD and Dhc proteins and recruitment of Egl and BicD to localizing transcripts.
Figure 4: Requirement for BicD and Egl for apical transcript localization in the blastoderm.

Similar content being viewed by others

References

  1. St Johnston, D. The intracellular localization of messenger RNAs. Cell 81, 161–170 (1995).

    Article  CAS  Google Scholar 

  2. Bashirullah, A., Cooperstock, R. L. & Lipshitz, H. D. RNA localization in development. Ann. Rev. Biochem. 67, 335–394 (1998).

    Article  CAS  Google Scholar 

  3. Neuman-Silberberg, F. S. & Schüpbach, T. The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGFα-like protein. Cell 75, 165–174 (1993).

    Article  CAS  Google Scholar 

  4. Gonzalez-Reyes, A., Elliott, H. & St Johnston, D. Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature 375, 654–658 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Roth, S., Neuman-Silberberg, F. S., Barcelo, G. & Schüpbach, T. cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Cell 81, 967–978 (1995).

    Article  CAS  Google Scholar 

  6. Berleth, T. et al. The role of localisation of bicoid RNA in organising the anterior pattern of the Drosophila embryo. EMBO J. 7, 1749–1756 (1988).

    Article  CAS  Google Scholar 

  7. Ephrussi, A., Dickinson, L. K. & Lehmann, R. oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66, 37–50 (1991).

    Article  CAS  Google Scholar 

  8. Kim-Ha, J., Smith, J. L. & MacDonald, P. M. oskar messenger-RNA is localized to the posterior pole of the Drosophila oocyte. Cell 66, 23–34 (1991).

    Article  CAS  Google Scholar 

  9. Davis, I. & Ish-Horowicz, D. Apical localisation of pair-rule transcripts requires 3′ sequences and limits protein diffusion in the Drosophila blastoderm embryo. Cell 67, 927–940 (1991).

    Article  CAS  Google Scholar 

  10. Lall, S., Francis-Lang, H., Norvell, A., Schüpbach, T. & Ish-Horowicz, D. Squid hnRNP protein promotes apical cytoplasmic transport and localisation of Drosophila pair-rule transcripts. Cell 98, 171–180 (1999).

    Article  CAS  Google Scholar 

  11. Simmonds, A., DosSantos, G., Livne-Bar, I. & Krause, H. Apical localization of wingless transcripts is required for Wingless signaling. Cell 105, 197–207 (2001).

    Article  CAS  Google Scholar 

  12. Wilkie, G. S. & Davis, I. Drosophila wingless and pair-rule transcripts localise apically by dynein mediated transport of RNA particles. Cell 105, 209–219 (2001).

    Article  CAS  Google Scholar 

  13. Serano, T. L. & Cohen, R. S. A small predicted stem-loop structure mediates oocyte localization of Drosophila K10 mRNA. Development 121, 3809–3818 (1995).

    CAS  PubMed  Google Scholar 

  14. Saunders, C. & Cohen, R. S. The role of oocyte transcription, the 5′UTR, and translation repression and derepression in Drosophila gurken mRNA and protein localization. Mol. Cell 3, 43–54 (1999).

    Article  CAS  Google Scholar 

  15. Macdonald, P. M. & Kerr, K. Redundant RNA recognition events in bicoid mRNA localization. RNA 3, 1413–1420 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Riedl, A. & Jacobs-Lorena, M. Determinants of Drosophila fushi tarazu mRNA instability. Mol. Cell Biol. 16, 3047–3053 (1996).

    Article  CAS  Google Scholar 

  17. Theurkauf, W. E. Microtubules and cytoplasm organization during Drosophila oogenesis. Dev. Biol. 165, 352–360 (1994).

    Article  CAS  Google Scholar 

  18. Pokrywka, N. J. & Stephenson, E. C. Microtubules mediate the localization of bicoid RNA during Drosophila oogenesis. Development 113, 55–66 (1991).

    CAS  PubMed  Google Scholar 

  19. Ish-Horowicz, D. & Pinchin, S. M. Pattern abnormalities induced by ectopic expression of the Drosophila gene hairy are associated with repression of fushi tarazu transcription. Cell 51, 405–415 (1987).

    Article  CAS  Google Scholar 

  20. Mohler, J. & Wieschaus, E. F. Dominant maternal-effect mutations of Drosophila melanogaster causing the production of double-abdomen embryos. Genetics 112, 803–822 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Suter, B. & Steward, R. Requirement for phosphorylation and localization of the Bicaudal-D protein in Drosophila oocyte differentiation. Cell 67, 917–926 (1991).

    Article  CAS  Google Scholar 

  22. Schüpbach, T. & Wieschaus, E. Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics 129, 1119–1136 (1991).

    PubMed  PubMed Central  Google Scholar 

  23. Theurkauf, W. E., Alberts, B. M., Jan, Y. N. & Jongens, T. A. A central role for microtubules in the differentiation of Drosophila oocytes. Development 118, 1169–1180 (1993).

    CAS  Google Scholar 

  24. Mach, J. M. & Lehmann, R. An Egalitarian–BicaudalD complex is essential for oocyte specification and axis determination in Drosophila. Genes Dev. 11, 423–435 (1997).

    Article  CAS  Google Scholar 

  25. Ran, B., Bopp, R. & Suter, B. Null alleles reveal novel requirements for Bic-D during Drosophila oogenesis and zygotic development. Development 120, 1233–1242 (1994).

    CAS  PubMed  Google Scholar 

  26. Wharton, R. P. & Struhl, G. Structure of the Drosophila Bicaudal-D protein and its role in localizing the posterior determinant nanos. Cell 59, 881–892 (1989).

    Article  CAS  Google Scholar 

  27. Suter, B., Romberg, L. M. & Steward, R. Bicaudal-D, a Drosophila gene involved in developmental asymmetry-localized transcript accumulation in ovaries and sequence similarity to myosin heavy-chain tail domains. Genes Dev. 3, 1957–1968 (1989).

    Article  CAS  Google Scholar 

  28. Moser, M. J., Holley, W. R., Chatterjee, A. & Mian, I. S. The proofreading domain of Escherichia coli DNA polymerase I and other DNA and/or RNA exonuclease domains. Nucleic Acids Res. 25, 5110–5118 (1997).

    Article  CAS  Google Scholar 

  29. Oh, J. & Steward, R. Bicaudal-D is essential for egg chamber formation and cytoskeletal organization in Drosophila oogenesis. Dev. Biol. 232, 91–104 (2001).

    Article  CAS  Google Scholar 

  30. Swan, A. & Suter, B. Role of Bicaudal-D in patterning the Drosophila egg chamber in mid-oogenesis. Development 122, 3577–3586 (1996).

    CAS  PubMed  Google Scholar 

  31. Oh, J., Baksa, K. & Steward, R. Functional domains of the Drosophila Bicaudal-D protein. Genetics 154, 713–724 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Swan, A., Nguyen, T. & Suter, B. Drosophila Lissencephaly-1 functions with Bic-D and dynein in oocyte determination and nuclear positioning. Nature Cell Biol. 1, 444–449 (1999).

    Article  CAS  Google Scholar 

  33. Thio, G. L., Ray, R. P., Barcelo, G. & Schüpbach, T. Localization of gurken RNA in Drosophila oogenesis requires elements in the 5′ and 3′ regions of the transcript. Dev. Biol. 221, 435–446 (2000).

    Article  CAS  Google Scholar 

  34. Lantz, V. & Schedl, P. Multiple cis-acting targeting sequences are required for orb mRNA localization during Drosophila oogenesis. Mol. Cell Biol. 14, 2235–2242 (1994).

    Article  CAS  Google Scholar 

  35. Schnorrer, F., Bohmann, K. & Nusslein-Volhard, C. The molecular motor dynein is involved in targeting Swallow and bicoid RNA to the anterior pole of Drosophila oocytes. Nature Cell Biol. 2, 185–190 (2000).

    Article  CAS  Google Scholar 

  36. Macdonald, P. M., Luk, S. K. & Kilpatrick, M. Protein encoded by the exuperantia gene is concentrated at sites of bicoid mRNA accumulation in Drosophila nurse cells but not in oocytes or embryos. Genes Dev. 5, 2455–2466 (1991).

    Article  CAS  Google Scholar 

  37. Marcey, D., Watkins, W. S. & Hazelrigg, T. The temporal and spatial distribution pattern of maternal Exuperantia protein: evidence for a role in establishment but not maintenance of bicoid mRNA localization. EMBO J. 10, 4259–4266 (1991).

    Article  CAS  Google Scholar 

  38. St Johnston, D., Driever, W., Berleth, T., Richstein, S. & Nüsslein-Volhard, C. Multiple steps in the localization of bicoid RNA to the anterior pole of the Drosophila oocyte. Development (Suppl.) 107, 13–19 (1989).

    CAS  PubMed  Google Scholar 

  39. Li, P., Yang, X., Wasser, M., Cai, Y. & Chia, W. Inscuteable and Staufen mediate asymmetric localization and segregation of prospero RNA during Drosophila neuroblast cell divisions. Cell 90, 437–447 (1997).

    Article  CAS  Google Scholar 

  40. Karlin-Mcginness, M., Serano, T. L. & Cohen, R. S. Comparative analysis of the kinetics and dynamics of K10, bicoid, and oskar mRNA localization in the Drosophila oocyte. Dev. Genet. 19, 238–248 (1996).

    Article  CAS  Google Scholar 

  41. Baens, M. & Marynen, P. A human homologue (BICD1) of the Drosophila Bicaudal-D gene. Genomics 45, 601–606 (1997).

    Article  CAS  Google Scholar 

  42. Lantz, V., Chang, J. S., Horabin, J. I., Bopp, D. & Schedl, P. The Drosophila orb RNA-binding protein is required for the formation of the egg chamber and establishment of polarity. Genes Dev. 8, 598–613 (1994).

    Article  CAS  Google Scholar 

  43. St Johnston, D., Beuchle, D. & Nüsslein-Volhard, C. staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell 66, 51–63 (1991).

    Article  CAS  Google Scholar 

  44. Sharp, D. J. et al. Functional coordination of three mitotic motors in Drosophila embryos. Mol. Biol. Cell 11, 241–253 (2000).

    Article  CAS  Google Scholar 

  45. Tautz, D. & Pfeifle, C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98, 81–85 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to I. Davis, N. MacDougall, G. Wilkie, D. Baker, A. Flament and J. Hughes for discussions; R. Lehmann, R. Steward, D. Sharp, B. Suter, M. Jacobs-Lorena, D. St Johnston, G. Dollar, L. Gavis, B. Cohen and Developmental Studies Hybridoma Bank for providing reagents; and many colleagues for comments on the manuscript. This work was supported by the Imperial Cancer Research Fund and a fellowship from the Royal Commission for the Exhibition of 1851 (to S.L.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ish-Horowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bullock, S., Ish-Horowicz, D. Conserved signals and machinery for RNA transport in Drosophila oogenesis and embryogenesis. Nature 414, 611–616 (2001). https://doi.org/10.1038/414611a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/414611a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing