Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A high deuterium abundance at redshift z = 0.7

Abstract

Of the light elements, the primordial abundance of deuterium relative to hydrogen, (D/H)p, provides the most sensitive diagnostic1 for the cosmological mass density parameter, ΩB. Recent high-redshift D/H measurements are highly discrepant2,3,4,5,6, although this may reflect observational uncertainties7,8. The larger primordial D/H values imply a low ΩB (requiring the Universe to be dominated by non-baryonic matter), and cause problems for galactic chemical evolution models, which have difficulty in reproducing the steep decline in D/H to the present-day values. Conversely, the lower D/H values measured athigh redshift imply an ΩB greater than that derived from 7 Li and 4 He abundance measurements, and may require a deuterium-abundance evolution that is too low to easily explain. Here wereport the first measurement of D/H at intermediate redshift(z = 0.7010), in a gas cloud selected to minimize observational uncertainties. Our analysis yields a value of D/H ((2.0 ± 0.5) × 10−4) which is at the upper end of the range of values measured at high redshifts. This finding, together with other independent observations, suggests that there may be inhomogeneity in (D/H)p of at least a factor of ten.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Data and model fits for Q1718 + 4807.

Similar content being viewed by others

References

  1. Epstein, R. I., Lattimer, J. M. & Schramm, D. N. The origin of deuterium. Nature 263, 198–202 (1976).

    Article  ADS  CAS  Google Scholar 

  2. Tytler, D., Fan, X.-M. & Burles, S. Cosmological baryon density derived from the deuterium abundance at redshift z = 3.57. Nature 381, 207–209 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Burles, S. & Tytler, D. Cosmological deuterium abundance and the baryon density of the universe. Science (submitted).

  4. Rugers, M. & Hogan, C. J. Confirmation of high deuterium abundance in quasar absorbers. Astrophys. J. 469, L1–L4 (1996).

    Google Scholar 

  5. Carswell, R. F., Rauch, M., Weymann, R. J., Cooke, A. J. & Webb, J. K. Is there deuterium in the z=3.32 complex in the spectrum of 0014 + 813? Mon. Not. R. Astron. Soc. 268, L1–L4 (1994).

    Google Scholar 

  6. Rugers, M. & Hogan, C. J. High deuterium abundance in a new quasar absorber. Astron. J. 111, 2135–2140 (1996).

    Google Scholar 

  7. Tytler, D., Burles, S. & Kirkman, D. New Keck spectra of Q0014 + 813: annulling the case for high deuterium abundances. Preprint astro-ph/9612121.

  8. Songaila, A., Wambler, E. J. & Cowie, L. L. Ahigh deuterium abundance in the early Universe. Nature 385, 137–139 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Webb, J. K., Carswell, R. F., Irwin, M. J. & Penston, M. V. On measuring the deuterium abundance in QSO absorption systems. Mon. Not. R. Astron. Soc. 250, 657–665 (1991).

    Google Scholar 

  10. Wampler, E. J. Alternative hydrogen cloud models. Nature 383, 308 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Lanzetta, K. M., Turnshek, D. & Sandoval, J. Ultraviolet spectra of QSOs, BL Lacertae objects, and Seyfert galaxies. Astrophys. J. Suppl. Ser. 84, 109–184 (1993).

    Google Scholar 

  12. Webb, J. K. QSO absorption lines.Thesis, Cambridge Univ.((1987)).

  13. Vidal-Madjar, A., Ferlet, R. & Lemoine, M. Deuterium abundance and cosmology. Preprint astro-ph/9612020.

  14. Pagel, B. E. J. Nucleosynthesis and Chemical Evolution of Galaxies (Cambridge Univ. Press, (1997)).

    Google Scholar 

  15. Schramm, D. S. & Turner, M. S. Deuteronomy and numbers. Nature 381s, 193–194 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Hata, N., Steigman, G., Bludman, S. & Langacker, P. Cosmological implications of two conflicting deuterium abundances. Phys. Rev. D 55s, 540–547 (1997).

    Google Scholar 

  17. Vangioni-Flam, E. & Cassé, M. Cosmological and astrophysical consequences of a high primordial deuterium abundance. Astrophys. J. 441, 471–476 (1995).

    Google Scholar 

  18. Hogan, C. J. Big bang nucleosynthesis and the observed abundances of light elements. Preprint astro-ph/9609138.

  19. Copi, C. J., Olive, K. A. & Schramm, D. N. Implications of a primordial origin for the dispersion in D/H in quasar absorption systems.Preprint astro-ph/9606156.

  20. Copi, C. J., Schramm, D. N. & Turner, M. S. Big-bang nucleosynthesis and the baryon density of the universe. Science 267, 192–199 (1995).

    Google Scholar 

  21. Jedamzik, K. & Fuller, G. M. Nucleosynthesis in the presence of primordial isocurvature baryon fluctuations. Astrophys. J. 452, 33–61 (1995).

    Google Scholar 

  22. Jedamzik, K. & Fuller, G. M. Is the deuterium in high redshift Lyman limit systems primordial? Preprint astro-ph/9609103.

  23. White, M., Viana, P. T. P., Liddle, A. R. & Scott, D. Cold dark matter models with high baryon content. Mon. Not. R. Astron. Soc. 283, 107–118 (1996).

    Google Scholar 

  24. White, S. D. M., Navaro, J. F., Evrard, A. E. & Frenk, C. S. The baryon content of galaxy clusters: a challenge to cosmological orthodoxy. Nature 366, 429–433 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract. K.M.L. was supported by NASA, STScI and NSF; M.L. was supported by NASA, DoE and NSF at the University of Chicago; J.K.W. thanks M. Ashley, J. Barrow, A.Little and R. J. Tayler for discussions, and SUN Microsystems Australia Pty Ltd for providing computing facilities for this work.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webb, J., Carswell, R., Lanzetta, K. et al. A high deuterium abundance at redshift z = 0.7. Nature 388, 250–252 (1997). https://doi.org/10.1038/40814

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/40814

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing