Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures

An Erratum to this article was published on 15 January 1998

Abstract

Spinocerebellar ataxia type 1 (SCA1) is one of several neurodegenerative disorders caused by an expansion of a polyglutamine tract1,2. It is characterized by ataxia, progressive motor deterioration, and loss of cerebellar Purkinje cells1. To understand the pathogenesis of SCA1, we examined the subcellular localization of wild-type human ataxin-1 (the protein encoded by the SCA1 gene) and mutant ataxin-1 in the Purkinje cells of transgenic mice3. We found that ataxin-1 localizes to the nuclei of cerebellar Purkinje cells. Normal ataxin-1 localizes to several nuclear structures 0.5 µm across, whereas the expanded ataxin-1 localizes to a single 2-µm structure, before the onset of ataxia. Mutant ataxin-1 localizes to a single nuclear structure in affected neurons of SCA1 patients. Similarly, COS-1 cells transfected with wild-type or mutant ataxin-1 show a similar pattern of nuclear localization; with expanded ataxin-1 occurring in larger structures that are fewer in number than those of normal ataxin-1. Colocalization studies show that mutant ataxin-1 causes a specific redistribution of the nuclear matrix-associated domain containing promyelocytic leukaemia protein4,5,6,7. Nuclear matrix preparations demonstrate that ataxin-1 associates with the nuclear matrix in Purkinje and COS cells. We therefore propose that a critical aspect of SCA1 pathogenesis involves the disruption of a nuclear matrix-associated domain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunofluorescence of ataxin-1 within the nuclei of transgenic mouse Purkinje cells and SCA1 patient neurons.
Figure 2: Immunofluorescence of ataxin-1 in transfected COS-1 cells.
Figure 3: Confocal analysis of ataxin-1[82] and other nuclear proteins in COS-1 cells.
Figure 4: Association of ataxin-1 with the nuclear matrix.

Similar content being viewed by others

References

  1. 1. Zoghbi, H. Y. & Orr, H. T. Spinocerebellar ataxia type 1. Semin. Cell Biol. 6, 29–35 (1995).

    Article  CAS  Google Scholar 

  2. 2. Ross, C. A. When more is less: Pathogenesis of glutamine repeat neurodegenerative diseases. Neuron 15, 493–496 (1995).

    Article  CAS  Google Scholar 

  3. 3. Burright, E. N. et al. SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 82, 937–948 (1995).

    Article  CAS  Google Scholar 

  4. 4. Stuurman, N. et al. Amonoclonal antibody recognizing nuclear matrix-associated nuclear bodies. J. Cell Sci. 101, 773–784 (1992).

    PubMed  Google Scholar 

  5. 5. Weis, K. et al. Retinoic acid regulates aberrant nuclear localization of PML-RAR alpha in acute promyelocytic leukemia cells. Cell 76, 345–356 (1994).

    Article  CAS  Google Scholar 

  6. 6. Koken, M. H. et al. The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J. 13, 1073–1083 (1994).

    Article  CAS  Google Scholar 

  7. 7. Dyck, J. A. et al. Anovel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 76, 333–343 (1994).

    Article  CAS  Google Scholar 

  8. 8. Servadio, A. et al. Expression analysis of the ataxin-1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals. Nature Genet. 10, 94–98 (1995).

    Article  CAS  Google Scholar 

  9. 9. Matilla, A. et al. Ataxin-1, the SCA1 gene product, is required for learning tasks mediated by both the hippocampus and cerebellum. Proc. Natl Acad. Sci. USA(submitted).

  10. 10. Robitaille, Y., Schut, L. & Kish, S. J. Structural and immunocytochemical features of olivopontocerebellar atrophy caused by the spinocerebellar ataxia type 1 (SCA-1) mutation define a unique phenotype. Acta Neropathol. 90, 572–581 (1995).

    Article  CAS  Google Scholar 

  11. 11. Spector, D. L. Macromolecular domains within the cell nucleus. Annu Rev. Cell Biol. 9, 265–315 (1993).

    Article  CAS  Google Scholar 

  12. 12. Fu, X. D. & Maniatis, T. Factor required for mammalian spliceosome assembly is localized to discrete regions in the nucleus. Nature 343, 437–441 (1990).

    Article  ADS  CAS  Google Scholar 

  13. 13. Raska, I. et al. Immunological and ultrastructural studies of the nuclear coiled body with autoimmune antibodies. Exp. Cell Res. 195, 27–37 (1991).

    Article  CAS  Google Scholar 

  14. 14. Dhordain, P. et al. The BTB/POZ domain targets the LAZ3/BCL6 oncoprotein to nuclear dots and mediates homomerisation in vivo. Oncogene 11, 2689–2697 (1995).

    CAS  PubMed  Google Scholar 

  15. 15. Bisotto, S., Lauriault, P., Duval, M. & Vincent, M. Colocalization of a high molecular mass phosphoprotein of the nuclear matrix (p255) with spliceosomes. J. Cell Sci. 108, 1873–1882 (1995).

    CAS  PubMed  Google Scholar 

  16. 16. Roizin, S. S. & Liu, J. C. Neuronal nuclear-cytoplasmic changes in Huntington's Chorea: electron microscope investigations. Adv. Neurol. 23, 95–122 (1979).

    Google Scholar 

  17. 17. Tellez-Nagel, I., Johnson, A. B. & Terry, R. D. Studies on brain biopsies of patients with Huntington's chorea. J. Neuropathol. Exp. Neurol. 33, 308–332 (1974).

    Article  CAS  Google Scholar 

  18. 18. Roos, R. A. C. & Bots, G. T. A. M. Nuclear membrane indentations in Huntington's Chorea. J. Neurol. Sci. 61, 37–47 (1983).

    Article  CAS  Google Scholar 

  19. 19. Paulson, H. L. et al. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19, 333–344 (1997).

    Article  CAS  Google Scholar 

  20. 20. Davies, S. W. et al. Formation of neuronal intranuclear inclusions (NII) underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548 (1997).

    Article  CAS  Google Scholar 

  21. 21. Matilla, A. et al. The cerebellar leucine-rich acidic nuclear protein interacts with ataxin-1. Nature 389, 974–978 (1997).

    Article  ADS  CAS  Google Scholar 

  22. 22. Cattoretti, G. et al. Antigen unmasking on formalin-fixed, paraffin-embedded tissue sections. J. Pathol. 171, 83–98 (1993).

    Article  CAS  Google Scholar 

  23. 23. Banfi, S. et al. Identification and characterization of the gene causing type 1 spinocerebellar ataxia. Nature Genet 7, 513–520 (1994).

    Article  CAS  Google Scholar 

  24. 24. Ausubel, F. M. et al. in Current Protocols in Molecular Biology 9.2.1–9.2.3 (John Wiley, New York, (1996)).

    Google Scholar 

  25. 25. Andrade, L. E., Tan, E. M. & Chan, E. K. Immunocytochemical analysis of the coiled body in the cell cycle and during cell proliferation. Proc. Natl Acad. Sci. USA 90, 1947–1951 (1993).

    Article  ADS  CAS  Google Scholar 

  26. 26. Chan, E. K., Takano, S., Andrade, L. E., Hamel, J. C. & Matera, A. G. Structure, expression and chromosomal localization of human p80-coilin gene. Nucleic Acids Res. 22, 4462–4469 (1994).

    Article  CAS  Google Scholar 

  27. 27. Tawfic, S. & Ahmed, K. Association of casein kinase 2 with nuclear matrix. Possible role in nuclear matrix protein phosphorylation. J. Biol. Chem. 69, 7489–7493 (1994).

    Google Scholar 

  28. 28. Fey, E. G. & Penman, S. Nuclear matrix proteins reflect cell type origin in cultured human cells. Proc. Natl Acad. Sci. USA 85, 121–125 (1988).

    Article  ADS  CAS  Google Scholar 

  29. 29. Berezney, R. & Coffey, D. S. Nuclear matrix isolation and characterization of a framework structure from rat liver nuclei. J. Cell Biol. 73, 616–632 (1977).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Bardwell for assistance with the BCL-6 transfections; E. N. Burright for assistance with SCA1 transgenic mice; D. Saxon for assistance with tissue sectioning and staining; G.Sedgewick for assistance with confocal microscopy and image processing; D. Armstrong for assistance in analysis of SCA1 human tissue; T. Maniatis for the anti-SC35 antibody; A. Dejean for the anti-PML polysera; R. Van Driel for the anti-PML monoclonal antibody 5E10; and E. K. Chan for the anti-p80-coilin polysera. This work was supported by grants from the National Institute of Neurological Disorders and Stroke of the NIH to H.T.O. and H.Y.Z. H.Y.Z. is a Howard Hughes Medical Institute investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry T. Orr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skinner, P., Koshy, B., Cummings, C. et al. Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures. Nature 389, 971–974 (1997). https://doi.org/10.1038/40153

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/40153

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing