Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MyD88 signaling in brain endothelial cells is essential for the neuronal activity and glucocorticoid release during systemic inflammation

Abstract

Activation of neuronal circuits involved in the control of autonomic responses is critical for the host survival to immune threats. The brain vascular system plays a key role in such immune-CNS communication, but the signaling pathway and exact type of cells within the blood-brain barrier (BBB) mediating these functions have yet to be uncovered. To elucidate this issue we used myeloid differentiation factor 88 (MyD88)-deficient mice, because these animals do not show any responses to the cytokine interleukin-1β (IL-1β). We created chimeric mice with competent MyD88 signaling in either the BBB endothelium or perivascular microglia of bone marrow origin and challenged them with IL-1β. Systemic treatment with the cytokine caused a robust transcriptional activation of genes involved in the prostaglandin E2 (PGE2) production by vascular cells of the brain. Upregulation of these genes is dependent on a functional MyD88 signaling in the endothelium, because MyD88-deficient mice that received bone marrow stem cells from wild-type animals (for example, functional perivascular microglia) exhibited no response to systemic IL-1β administration. MyD88 competent endothelial cells also mediate neuronal activation and plasma release of glucocorticoids, whereas chimeric mice with MyD88-competent perivascular microglia did not show a significant increase of these functions. Moreover, competent endothelial cells for the gene encoding Toll-like receptor 4 (TLR4) are essential for the release of plasma corticosterone in response to low and high doses of lipopolysaccharide. Therefore, BBB endothelial cells and not perivascular microglia are the main target of circulating inflammatory mediators to activate the brain circuits and key autonomic functions during systemic immune challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Rivest S . How circulating cytokines trigger the neural circuits that control the hypothalamic–pituitary–adrenal axis. Psychoneuroendocrinology 2001; 26: 761–788.

    Article  CAS  PubMed  Google Scholar 

  2. Webster JI, Tonelli L, Sternberg EM . Neuroendocrine regulation of immunity. Annu Rev Immunol 2002; 20: 125–163.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang J, Rivest S . Is survival possible without arachidonate metabolites in the brain during systemic infection? News Physiol Sci 2003; 18: 137–142.

    Article  CAS  PubMed  Google Scholar 

  4. Laflamme N, Lacroix S, Rivest S . An essential role of interleukin-1beta in mediating NF-kappaB activity and COX-2 transcription in cells of the blood-brain barrier in response to a systemic and localized inflammation but not during endotoxemia. J Neurosci 1999; 19: 10923–10930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Laflamme N, Rivest S . Effects of systemic immunogenic insults and circulating proinflammatory cytokines on the transcription of the inhibitory factor kappaB alpha within specific cellular populations of the rat brain. J Neurochem 1999; 73: 309–321.

    Article  CAS  PubMed  Google Scholar 

  6. Crofford LJ, Tan B, McCarthy CJ, Hla T . Involvement of nuclear factor kappa B in the regulation of cyclooxygenase-2 expression by interleukin-1 in rheumatoid synoviocytes. Arthritis Rheum 1997; 40: 226–236.

    Article  CAS  PubMed  Google Scholar 

  7. Inoue H, Tanabe T . Transcriptional role of the nuclear factor kappa B site in the induction by lipopolysaccharide and suppression by dexamethasone of cyclooxygenase-2 in U937 cells. Biochem Biophys Res Commun 1998; 244: 143–148.

    Article  CAS  PubMed  Google Scholar 

  8. Schmedtje Jr JF, Ji YS, Liu WL, DuBois RN, Runge MS . Hypoxia induces cyclooxygenase-2 via the NF-kappaB p65 transcription factor in human vascular endothelial cells. J Biol Chem 1997; 272: 601–608.

    Article  CAS  PubMed  Google Scholar 

  9. Sorli CH, Zhang HJ, Armstrong MB, Rajotte RV, Maclouf J, Robertson RP . Basal expression of cyclooxygenase-2 and nuclear factor-interleukin 6 are dominant and coordinately regulated by interleukin 1 in the pancreatic islet. Proc Natl Acad Sci USA 1998; 95: 1788–1793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Murakami M, Kudo I . Recent advances in molecular biology and physiology of the prostaglandin E2-biosynthetic pathway. Prog Lipid Res 2004; 43: 3–35.

    Article  CAS  PubMed  Google Scholar 

  11. Blais V, Turrin NP, Rivest S . Cyclooxygenase 2 (COX-2) inhibition increases the inflammatory response in the brain during systemic immune stimuli. J Neurochem 2005; 95: 1563–1574.

    Article  CAS  PubMed  Google Scholar 

  12. Blais V, Rivest S . Inhibitory action of nitric oxide on circulating tumor necrosis factor-induced NF-kappaB activity and COX-2 transcription in the endothelium of the brain capillaries. J Neuropathol Exp Neurol 2001; 60: 893–905.

    Article  CAS  PubMed  Google Scholar 

  13. Cao C, Matsumura K, Yamagata K, Watanabe Y . Endothelial cells of the rat brain vasculature express cyclooxygenase-2 mRNA in response to systemic interleukin-1 beta: a possible site of prostaglandin synthesis responsible for fever. Brain Res 1996; 733: 263–272.

    Article  CAS  PubMed  Google Scholar 

  14. Cao C, Matsumura K, Watanabe Y . Induction of cyclooxygenase-2 in the brain by cytokines. Ann N Y Acad Sci 1997; 813: 307–309.

    Article  CAS  PubMed  Google Scholar 

  15. Cao C, Matsumura K, Yamagata K, Watanabe Y . Involvement of cyclooxygenase-2 in LPS-induced fever and regulation of its mRNA by LPS in the rat brain. Am J Physiol 1997; 272 (6 Part 2): R1712–R1725.

    CAS  PubMed  Google Scholar 

  16. Cao C, Matsumura K, Yamagata K, Watanabe Y . Cyclooxygenase-2 is induced in brain blood vessels during fever evoked by peripheral or central administration of tumor necrosis factor. Brain Res Mol Brain Res 1998; 56: 45–56.

    Article  CAS  PubMed  Google Scholar 

  17. Cao C, Matsumura K, Ozaki M, Watanabe Y . Lipopolysaccharide injected into the cerebral ventricle evokes fever through induction of cyclooxygenase-2 in brain endothelial cells. J Neurosci 1999; 19: 716–725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ek M, Engblom D, Saha S, Blomqvist A, Jakobsson PJ, Ericsson-Dahlstrand A . Inflammatory response: pathway across the blood-brain barrier. Nature 2001; 410: 430–431.

    Article  CAS  PubMed  Google Scholar 

  19. Engblom D, Saha S, Engstrom L, Westman M, Audoly LP, Jakobsson PJ et al. Microsomal prostaglandin E synthase-1 is the central switch during immune-induced pyresis. Nat Neurosci 2003; 6: 1137–1138.

    Article  CAS  PubMed  Google Scholar 

  20. Matsumura K, Cao C, Ozaki M, Morii H, Nakadate K, Watanabe Y . Electron microscopic evidence for induction of cyclooxygenase-2 in brain endothelial cells. Ann N Y Acad Sci 1998; 856: 278–280.

    Article  CAS  PubMed  Google Scholar 

  21. Matsumura K, Cao C, Ozaki M, Morii H, Nakadate K, Watanabe Y . Brain endothelial cells express cyclooxygenase-2 during lipopolysaccharide-induced fever: light and electron microscopic immunocytochemical studies. J Neurosci 1998; 18: 6279–6289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Quan N, Whiteside M, Herkenham M . Cyclooxygenase 2 mRNA expression in rat brain after peripheral injection of lipopolysaccharide. Brain Res 1998; 802: 189–197.

    Article  CAS  PubMed  Google Scholar 

  23. Rivest S . What is the cellular source of prostaglandins in the brain in response to systemic inflammation? Facts and controversies. Mol Psychiatry 1999; 4: 500–507.

    Article  PubMed  Google Scholar 

  24. Schiltz JC, Sawchenko PE . Distinct brain vascular cell types manifest inducible cyclooxygenase expression as a function of the strength and nature of immune insults. J Neurosci 2002; 22: 5606–5618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schiltz JC, Sawchenko PE . Signaling the brain in systemic inflammation: the role of perivascular cells. Front Biosci 2003; 8: s1321–s1329.

    Article  CAS  PubMed  Google Scholar 

  26. Elmquist JK, Breder CD, Sherin JE, Scammell TE, Hickey WF, Dewitt D et al. Intravenous lipopolysaccharide induces cyclooxygenase 2-like immunoreactivity in rat brain perivascular microglia and meningeal macrophages. J Comp Neurol 1997; 381: 119–129.

    Article  CAS  PubMed  Google Scholar 

  27. Chakravarty S, Herkenham M . Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J Neurosci 2005; 25: 1788–1796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Turrin NP, Rivest S . Unraveling the molecular details involved in the intimate link between the immune and neuroendocrine systems. Exp Biol Med (Maywood) 2004; 229: 996–1006.

    Article  CAS  Google Scholar 

  29. Takeda K, Kaisho T, Akira S . Toll-like receptors. Annu Rev Immunol 2003; 21: 335–376.

    Article  CAS  PubMed  Google Scholar 

  30. Ogimoto K, Harris Jr MK, Wisse BE . MyD88 is a key mediator of anorexia, but not weight loss, induced by lipopolysaccharide and interleukin-1 beta. Endocrinology 2006; 147: 4445–4453.

    Article  CAS  PubMed  Google Scholar 

  31. Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 1998; 9: 143–150.

    Article  CAS  PubMed  Google Scholar 

  32. Vallieres L, Sawchenko PE . Bone marrow-derived cells that populate the adult mouse brain preserve their hematopoietic identity. J Neurosci 2003; 23: 5197–5207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Simard AR, Rivest S . Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J 2004; 18: 998–1000.

    Article  CAS  PubMed  Google Scholar 

  34. Laflamme N, Echchannaoui H, Landmann R, Rivest S . Cooperation between toll-like receptor 2 and 4 in the brain of mice challenged with cell wall components derived from gram-negative and gram-positive bacteria. Eur J Immunol 2003; 33: 1127–1138.

    Article  CAS  PubMed  Google Scholar 

  35. Paxinos G, Franklin K . The Mouse Brain in Stereotaxic Coordinates, 2nd edn. Academic Press: San Diego, 2001; 271pp.

    Google Scholar 

  36. Yamagata K, Matsumura K, Inoue W, Shiraki T, Suzuki K, Yasuda S et al. Coexpression of microsomal-type prostaglandin E synthase with cyclooxygenase-2 in brain endothelial cells of rats during endotoxin-induced fever. J Neurosci 2001; 21: 2669–2677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ericsson A, Arias C, Sawchenko PE . Evidence for an intramedullary prostaglandin-dependent mechanism in the activation of stress-related neuroendocrine circuitry by intravenous interleukin-1. J Neurosci 1997; 17: 7166–7179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Katsuura G, Gottschall PE, Dahl RR, Arimura A . Adrenocorticotropin release induced by intracerebroventricular injection of recombinant human interleukin-1 in rats: possible involvement of prostaglandin. Endocrinology 1988; 122: 1773–1779.

    Article  CAS  PubMed  Google Scholar 

  39. Lacroix S, Rivest S . Functional circuitry in the brain of immune-challenged rats: partial involvement of prostaglandins. J Comp Neurol 1997; 387: 307–324.

    Article  CAS  PubMed  Google Scholar 

  40. Watanabe T, Morimoto A, Sakata Y, Murakami N . ACTH response induced by interleukin-1 is mediated by CRF secretion stimulated by hypothalamic PGE. Experientia 1990; 46: 481–484.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang J, Rivest S . A functional analysis of EP4 receptor-expressing neurons in mediating the action of prostaglandin E2 within specific nuclei of the brain in response to circulating interleukin-1beta. J Neurochem 2000; 74: 2134–2145.

    Article  CAS  PubMed  Google Scholar 

  42. Blais V, Zhang J, Rivest S . In altering the release of glucocorticoids, ketorolac exacerbates the effects of systemic immune stimuli on expression of proinflammatory genes in the brain. Endocrinology 2002; 143: 4820–4827.

    Article  CAS  PubMed  Google Scholar 

  43. Zaretsky DV, Hunt JL, Zaretskaia MV, DiMicco JA . Microinjection of prostaglandin E2 and muscimol into the preoptic area in conscious rats: comparison of effects on plasma adrenocorticotrophic hormone (ACTH), body temperature, locomotor activity, and cardiovascular function. Neurosci Lett 2006; 397: 291–296.

    Article  CAS  PubMed  Google Scholar 

  44. Scammell TE, Elmquist JK, Griffin JD, Saper CB . Ventromedial preoptic prostaglandin E2 activates fever-producing autonomic pathways. J Neurosci 1996; 16: 6246–6254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rassnick S, Zhou D, Rabin BS . Central administration of prostaglandin E2 suppresses in vitro cellular immune responses. Am J Physiol 1995; 269 (1 Part 2): R92–R97.

    CAS  PubMed  Google Scholar 

  46. Quan N, He L, Lai W . Intraventricular infusion of antagonists of IL-1 and TNF alpha attenuates neurodegeneration induced by the infection of Trypanosoma brucei. J Neuroimmunol 2003; 138: 92–98.

    Article  CAS  PubMed  Google Scholar 

  47. Li S, Wang Y, Matsumura K, Ballou LR, Morham SG, Blatteis CM . The febrile response to lipopolysaccharide is blocked in cyclooxygenase-2(−/−), but not in cyclooxygenase-1(−/−) mice. Brain Res 1999; 825: 86–94.

    Article  CAS  PubMed  Google Scholar 

  48. Steiner AA, Rudaya AY, Robbins JR, Dragic AS, Langenbach R, Romanovsky AA . Expanding the febrigenic role of cyclooxygenase-2 to the previously overlooked responses. Am J Physiol Regul Integr Comp Physiol 2005; 289: R1253–R1257.

    Article  CAS  PubMed  Google Scholar 

  49. Li S, Ballou LR, Morham SG, Blatteis CM . Cyclooxygenase-2 mediates the febrile response of mice to interleukin-1beta. Brain Res 2001; 910: 163–173.

    Article  CAS  PubMed  Google Scholar 

  50. Turrin N, Rivest S . Irradiation does not compromise or exacerbate the innate immune response in the brain of mice that were transplanted with bone marrow stem cells. Stem Cells 2007; 25: 3165–3172.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The Canadian Institutes in Health Research (CIHR) supported this research. Serge Rivest hold a Canadian Research Chair in Neuroimmunology. The authors thank Dr S Akira (Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan) for the gift of the MyD88-deficient breeding pair of mice and Martine Lessard for the help in the generation of chimeric mice and FACS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Rivest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gosselin, D., Rivest, S. MyD88 signaling in brain endothelial cells is essential for the neuronal activity and glucocorticoid release during systemic inflammation. Mol Psychiatry 13, 480–497 (2008). https://doi.org/10.1038/sj.mp.4002122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4002122

Keywords

This article is cited by

Search

Quick links