Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Neuregulin 1 (8p12) and childhood-onset schizophrenia: susceptibility haplotypes for diagnosis and brain developmental trajectories

Abstract

Childhood-onset schizophrenia (COS), defined as onset of psychosis by the age of 12, is a rare and malignant form of the illness, which may have more salient genetic influence. Since the initial report of association between neuregulin 1 (NRG1) and schizophrenia in 2002, numerous independent replications have been reported. In the current study, we genotyped 56 markers (54 single-nucleotide polymorphisms (SNPs) and two microsatellites) spanning the NRG1 locus on 78 COS patients and their parents. We used family-based association analysis for both diagnostic (extended transmission disequilibrium test) and quantitative phenotypes (quantitative transmission disequilibrium test) and mixed-model regression. Most subjects had prospective anatomic brain magnetic resonance imaging (MRI) scans at 2-year intervals. Further, we genotyped a sample of 165 healthy controls in the MRI study to examine genetic risk effects on normal brain development. Individual markers showed overtransmission of alleles to affecteds (P=0.009–0.05). Further, several novel four-marker haplotypes demonstrated significant transmission distortion. There was no evidence of epistasis with SNPs in erbB4. The risk allele (0) at 420M9-1395 was associated with poorer premorbid social functioning. Further, possession of the risk allele was associated with different trajectories of change in lobar volumes. In the COS group, risk allele carriers had greater total gray and white matter volume in childhood and a steeper rate of subsequent decline in volume into adolescence. By contrast, in healthy children, possession of the risk allele was associated with different trajectories in gray matter only and was confined to frontotemporal regions, reflecting epistatic or other illness-specific effects mediating NRG1 influence on brain development in COS. This replication further documents the role of NRG1 in the abnormal brain development in schizophrenia. This is the first demonstration of a disease-specific pattern of gene action in schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Cardno AG, Marshall EJ, Coid B, Macdonald AM, Ribchester TR, Davies NJ et al. Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Arch Gen Psychiatry 1999; 56: 162–168.

    CAS  Google Scholar 

  2. Harrison PJ, Owen MJ . Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 2003; 361: 417–419.

    Article  CAS  Google Scholar 

  3. Harrison PJ, Weinberger DR . Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 10: 40–68; image 45.

    Article  CAS  Google Scholar 

  4. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 877–892.

    Article  Google Scholar 

  5. Nicolson R, Rapoport JL . Childhood-onset schizophrenia: rare but worth studying. Biol Psychiatry 1999; 46: 1418–1428.

    Article  CAS  Google Scholar 

  6. Rapoport JL, Addington AM, Frangou S, Psych MR . The neurodevelopmental model of schizophrenia: update 2005. Mol Psychiatry 2005; 10: 434–449.

    Article  CAS  Google Scholar 

  7. Nicolson R, Brookner FB, Lenane M, Gochman P, Ingraham LJ, Egan MF et al. Parental schizophrenia spectrum disorders in childhood-onset and adult-onset schizophrenia. Am J Psychiatry 2003; 160: 490–495.

    Article  Google Scholar 

  8. Sporn A, Greenstein D, Gogtay N, Sailer F, Hommer DW, Rawlings R et al. Childhood-onset schizophrenia: smooth pursuit eye-tracking dysfunction in family members. Schizophr Res 2005; 73: 243–252.

    Article  Google Scholar 

  9. Hollis C . Child and adolescent (juvenile onset) schizophrenia. A case control study of premorbid developmental impairments. Br J Psychiatry 1995; 166: 489–495.

    Article  CAS  Google Scholar 

  10. Alaghband-Rad J, McKenna K, Gordon CT, Albus KE, Hamburger SD, Rumsey JM et al. Childhood-onset schizophrenia: the severity of premorbid course. J Am Acad Child Adolesc Psychiatry 1995; 34: 1273–1283.

    Article  CAS  Google Scholar 

  11. Gogtay N, Giedd J, Rapoport JL . Brain development in healthy, hyperactive, and psychotic children. Arch Neurol 2002; 59: 1244–1248.

    Article  Google Scholar 

  12. Sporn AL, Greenstein DK, Gogtay N, Jeffries NO, Lenane M, Gochman P et al. Progressive brain volume loss during adolescence in childhood-onset schizophrenia. Am J Psychiatry 2003; 160: 2181–2189.

    Article  Google Scholar 

  13. Thompson PM, Vidal C, Giedd JN, Gochman P, Blumenthal J, Nicolson R et al. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci USA 2001; 98: 11650–11655.

    Article  CAS  Google Scholar 

  14. Sporn A, Addington A, Reiss AL, Dean M, Gogtay N, Potocnik U et al. 22q11 deletion syndrome in childhood onset schizophrenia: an update. Mol Psychiatry 2004; 9: 225–226.

    Article  CAS  Google Scholar 

  15. Meyer D, Yamaai T, Garratt A, Riethmacher-Sonnenberg E, Kane D, Theill LE et al. Isoform-specific expression and function of neuregulin. Development 1997; 124: 3575–3586.

    CAS  PubMed  Google Scholar 

  16. Kwon OB, Longart M, Vullhorst D, Hoffman DA, Buonanno A . Neuregulin-1 reverses long-term potentiation at CA1 hippocampal synapses. J Neurosci 2005; 25: 9378–9383.

    Article  CAS  Google Scholar 

  17. Falls DL . Neuregulins: functions, forms, and signaling strategies. Exp Cell Res 2003; 284: 14–30.

    Article  CAS  Google Scholar 

  18. Norton N, Moskvina V, Morris DW, Bray NJ, Zammit S, Williams NM et al. Evidence that interaction between neuregulin 1 and its receptor erbB4 increases susceptibility to schizophrenia. Am J Med Genet B 2006; 141: 96–101.

    Article  Google Scholar 

  19. Association AP . Diagnostic and Statistical Manual of Mental Disorders – Fourth Edition. American Psychiatric Association: Washington, DC, 1994.

    Google Scholar 

  20. McKenna K, Gordon CT, Lenane M, Kaysen D, Fahey K, Rapoport JL . Looking for childhood-onset schizophrenia: the first 71 cases screened. J Am Acad Child Adolesc Psychiatry 1994; 33: 636–644.

    Article  CAS  Google Scholar 

  21. Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P et al. Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry 1997; 36: 980–988.

    Article  CAS  Google Scholar 

  22. Ambrosini PJ . Historical development and present status of the schedule for affective disorders and schizophrenia for school-age children (K-SADS). J Am Acad Child Adolesc Psychiatry 2000; 39: 49–58.

    Article  CAS  Google Scholar 

  23. Cannon-Spoor HE, Potkin SG, Wyatt RJ . Measurement of premorbid adjustment in chronic schizophrenia. Schizophr Bull 1982; 8: 470–484.

    Article  CAS  Google Scholar 

  24. Berument SK, Rutter M, Lord C, Pickles A, Bailey A . Autism screening questionnaire: diagnostic validity. Br J Psychiatry 1999; 175: 444–451.

    Article  CAS  Google Scholar 

  25. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 1999; 2: 861–863.

    Article  CAS  Google Scholar 

  26. Hollingshead AB . Four-Factor Index for Social Status. Yale University: New Haven, CT, 1975.

    Google Scholar 

  27. Giedd JN, Snell JW, Lange N, Rajapakse JC, Casey BJ, Kozuch PL et al. Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cereb Cortex 1996; 6: 551–560.

    Article  CAS  Google Scholar 

  28. Castellanos FX, Lee PP, Sharp W, Jeffries NO, Greenstein DK, Clasen LS et al. Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA 2002; 288: 1740–1748.

    Article  Google Scholar 

  29. Abecasis GR, Cherny SS, Cookson WO, Cardon LR . Merlin – rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97–101.

    Article  CAS  Google Scholar 

  30. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  31. Dudbridge F . Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003; 25: 115–121.

    Article  Google Scholar 

  32. Martin ER, Bass MP, Gilbert JR, Pericak-Vance MA, Hauser ER . Genotype-based association test for general pedigrees: the genotype-PDT. Genet Epidemiol 2003; 25: 203–213.

    Article  CAS  Google Scholar 

  33. Abecasis GR, Cardon LR, Cookson WO . A general test of association for quantitative traits in nuclear families. Am J Hum Genet 2000; 66: 279–292.

    Article  CAS  Google Scholar 

  34. Petryshen TL, Middleton FA, Kirby A, Aldinger KA, Purcell S, Tahl AR et al. Support for involvement of neuregulin 1 in schizophrenia pathophysiology. Mol Psychiatry 2005; 10: 366–374, 328.

    Article  CAS  Google Scholar 

  35. Bakker SC, Hoogendoorn ML, Selten JP, Verduijn W, Pearson PL, Sinke RJ et al. Neuregulin 1: genetic support for schizophrenia subtypes. Mol Psychiatry 2004; 9: 1061–1063.

    Article  CAS  Google Scholar 

  36. Addington AM, Gornick M, Duckworth J, Sporn A, Gogtay N, Bobb A et al. GAD1 (2q31.1), which encodes glutamic acid decarboxylase (GAD67), is associated with childhood-onset schizophrenia and cortical gray matter volume loss. Mol Psychiatry 2005; 10: 581–588.

    Article  CAS  Google Scholar 

  37. Addington AM, Gornick M, Sporn AL, Gogtay N, Greenstein D, Lenane M et al. Polymorphisms in the 13q33.2 gene G72/G30 are associated with childhood-onset schizophrenia and psychosis not otherwise specified. Biol Psychiatry 2004; 55: 976–980.

    Article  CAS  Google Scholar 

  38. Gornick MC, Addington AM, Sporn A, Gogtay N, Greenstein D, Lenane M et al. Dysbindin (DTNBP1, 6p22.3) is sssociated with childhood-onset psychosis and endophenotypes measured by the Premorbid Adjustment Scale (PAS). J Autism Dev Disord 2005; 35: 1–8.

    Article  Google Scholar 

  39. Owen MJ, Williams NM, O'Donovan MC . The molecular genetics of schizophrenia: new findings promise new insights. Mol Psychiatry 2004; 9: 14–27.

    Article  CAS  Google Scholar 

  40. Gardner M, Gonzalez-Neira A, Lao O, Calafell F, Bertranpetit J, Comas D . Extreme population differences across neuregulin 1 gene, with implications for association studies. Mol Psychiatry 2006; 11: 66–75.

    Article  CAS  Google Scholar 

  41. Fox IJ, Kornblum HI . Developmental profile of ErbB receptors in murine central nervous system: implications for functional interactions. J Neurosci Res 2005; 79: 584–597.

    Article  CAS  Google Scholar 

  42. Liu Y, Ford BD, Mann MA, Fischbach GD . Neuregulin-1 increases the proliferation of neuronal progenitors from embryonic neural stem cells. Dev Biol 2005; 283: 437–445.

    Article  CAS  Google Scholar 

  43. Schmid RS, McGrath B, Berechid BE, Boyles B, Marchionni M, Sestan N et al. Neuregulin 1-erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex. Proc Natl Acad Sci USA 2003; 100: 4251–4256.

    Article  CAS  Google Scholar 

  44. Roysommuti S, Carroll SL, Wyss JM . Neuregulin-1beta modulates in vivo entorhinal–hippocampal synaptic transmission in adult rats. Neuroscience 2003; 121: 779–785.

    Article  CAS  Google Scholar 

  45. Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N et al. Intellectual ability and cortical development in children and adolescents. Nature 2006; 440: 676–679.

    Article  CAS  Google Scholar 

  46. Walss-Bass C, Liu W, Lew DF, Villegas R, Montero P, Dassori A et al. A novel missense mutation in the transmembrane domain of neuregulin 1 is associated with schizophrenia. Biol Psychiatry (in press).

  47. Li D, Collier DA, He L . Meta-analysis shows strong positive association of the neuregulin 1 (NRG1) gene with schizophrenia. Hum Mol Genet 2006; 15: 1995–2002.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge and thank all of the patients and their families that have participated in our study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Addington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Addington, A., Gornick, M., Shaw, P. et al. Neuregulin 1 (8p12) and childhood-onset schizophrenia: susceptibility haplotypes for diagnosis and brain developmental trajectories. Mol Psychiatry 12, 195–205 (2007). https://doi.org/10.1038/sj.mp.4001906

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001906

Keywords

This article is cited by

Search

Quick links