Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

PKC, MAP kinases and the bcl-2 family of proteins as long-term targets for mood stabilizers

Abstract

The complexity of the unique biology of bipolar disorder—which includes the predisposition to episodic, and often progressive, mood disturbance—and the dynamic nature of compensatory processes in the brain, coupled with limitations in experimental design, have hindered our ability to identify the underlying pathophysiology of this fascinating neuropsychiatric disorder. Although we have yet to identify the specific abnormal genes in mood disorders, recent studies have implicated critical signal transduction pathways as being integral to the pathophysiology and treatment of bipolar disorder. In particular, a converging body of preclinical data has shown that chronic lithium and valproate, at therapeutically relevant concentrations, regulate the protein kinase C signaling cascade. This has led to the investigation of the antimanic efficacy of tamoxifen (at doses sufficient to inhibit protein kinase C), with very encouraging preliminary results. A growing body of data also suggests that impairments of neuroplasticity and cellular resilience may also underlie the pathophysiology of bipolar disorder. It is thus noteworthy that mood stabilizers, such as lithium and valproate, indirectly regulate a number of factors involved in cell survival pathways—including cAMP response element binding protein, brain derived neurotrophic factor, bcl-2 and mitogen-activated protein kinases—and may thus bring about some of their delayed long-term beneficial effects via under-appreciated neurotrophic effects. The development of novel treatments, which more directly target molecules involved in critical central nervous system cell survival and cell death pathways, has the potential to enhance neuroplasticity and cellular resilience, thereby modulating the long-term course and trajectory of these devastating illnesses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Lenox RH . Role of receptor coupling to phosphoinositide metabolism in the therapeutic action of lithium Adv Exp Med Biol 1987 221: 515–530

    Article  CAS  PubMed  Google Scholar 

  2. Manji HK, Drevets WC, Charney DS . The cellular neurobiology of depression Nature Med 2001 7: 541–547

    Article  CAS  PubMed  Google Scholar 

  3. Drevets WC . Neuroimaging studies of mood disorders Biol Psychiatry 2000 48: 813–829

    Article  CAS  PubMed  Google Scholar 

  4. Garlow SJ, Musselman DL, Nemeroff CB . The neurochemistry of mood disorders clinical studies In: Charney DS, Nester EJ, Bunney BS (eds) Neurobiology of Mental Illness Oxford University Press: New York 1999 pp 348–364

    Google Scholar 

  5. Wang JF, Young LT, Li PP et al. Signal transduction abnormalities in bipolar disorder In: Joffe RT, Young LT (eds) Bipolar Disorder: Biological Models and Their Clinical Application Marcel Dekker: New York 1996 pp 41–79

    Google Scholar 

  6. Bowden CL . Toward an integrated biological model of bipolar disorder In: Young LT, Joffe RT (eds) Bipolar Disorder: Biological Models and Their Clinical Application Marcel Dekker: New York 1997 pp 235–254

    Google Scholar 

  7. Bhalla US, Iyengar R . Emergent properties of networks of biological signaling pathways Science 1999 283: 381–387

    Article  CAS  PubMed  Google Scholar 

  8. Jope RS, Williams MB . Lithium and brain signal transduction systems Biochem Pharmacol 1994 77: 429–441

    Article  Google Scholar 

  9. Moore GJ, Bebchuk JM, Parrish JK et al. Temporal dissociation between lithium-induced CNS myo-inositol changes and clinical response in manic-depressive illness Am J Psychiatry 1999 156: 1902–1908

    CAS  PubMed  Google Scholar 

  10. Jope RS . Anti-bipolar therapy: mechanism of action of lithium Mol Psychiatry 1999 4: 117–128

    Article  CAS  PubMed  Google Scholar 

  11. Manji HK, Lenox RH . Protein kinase C signaling in the brain: molecular transduction of mood stabilization in the treatment of bipolar disorder Biol Psychiatry 1999 46: 1328–1351

    Article  CAS  PubMed  Google Scholar 

  12. Hahn CG, Friedman E . Abnormalities in protein kinase C signaling and the pathophysiology of bipolar disorder Bipolar Disord 1999 1: 81–86

    Article  CAS  PubMed  Google Scholar 

  13. Manji HK, Moore GJ, Rajkowska G, Chen G . Neuroplasticity and cellular resilience in mood disorders. Millennium article Mol Psychiatry 2000 5: 578–593

    Article  CAS  PubMed  Google Scholar 

  14. Stabel S, Parker PJ . Protein kinase C Pharmacol Ther 1991 51: 71–95

    Article  CAS  PubMed  Google Scholar 

  15. Newton AC . Protein kinase C: structure, function and regulation J Biol Chem 1995 270: 28495–28498

    Article  CAS  PubMed  Google Scholar 

  16. Nishizuka Y . Protein kinase C and lipid signaling for sustained cellular responses FASEB J 1995 9: 484–496

    Article  CAS  PubMed  Google Scholar 

  17. Manji HK, Etcheberrigaray R, Chen G, Olds JL . Lithium decreases membrane-associated protein kinase C in hippocampus: selectivity for the ∞ isozyme J Neurochem 1993 61: 2303–2310

    Article  CAS  PubMed  Google Scholar 

  18. Chen G, Huang LD, Manji HK . Mood stabilizers regulate cytoprotective and mRNA binding proteins in the brain: long term effects on cell survival and transcript stability Int J Neuropsychopharmacol 2001 4: 47–64

    Article  CAS  PubMed  Google Scholar 

  19. Lenox RH, Watson DG, Ellis J . Chronic lithium administration alters a prominent PKC substrate in rat hippocampus Brain Res 1992 570: 333–340

    Article  CAS  PubMed  Google Scholar 

  20. Chen G, Manji HK, Hawver DB, Wright CB, Potter WZ . Chronic sodium valproate selectively decreases protein kinase C alpha and epsilon in vitro J Neurochem 1994 63: 2361–2365

    Article  CAS  PubMed  Google Scholar 

  21. Conn PJ, Sweatt JD . Protein kinase C in the nervous system In: Kuo JF (ed) Protein Kinase C Oxford University Press: New York 1994 pp 199–235

    Google Scholar 

  22. Couldwell WT, Weiss MH, DeGiorgio CM et al. Clinical and radiographic response in a minority of patients with recurrent malignant gliomas treated with high dose tamoxifen Neurosurgery 1993 32: 485–489

    Article  CAS  PubMed  Google Scholar 

  23. Bebchuk JM, Arfken CL, Dolan-Manji S et al. A preliminary investigation of a protein kinase C inhibitor (tamoxifen) in the treatment of acute mania Arch Gen Psychiatry 2000 57: 95–97

    Article  CAS  PubMed  Google Scholar 

  24. Hyman SE, Nestler EJ . Initiation and adaptation: a paradigm for understanding psychotropic drug action Am J Psychiatry 1996 153: 151–162

    Article  CAS  PubMed  Google Scholar 

  25. Kandel ER . A new intellectual framework for psychiatry Am J Psychiatry 1998 155: 457–469

    Article  CAS  PubMed  Google Scholar 

  26. Ikonomov O, Manji HK . Molecular mechanisms underlying mood-stabilization in manic-depressive illness: the phenotype challenge Am J Psychiatry 1999 156: 1506–1514

    Article  CAS  PubMed  Google Scholar 

  27. Flint J, Corley R . Do animal models have a place in the genetic analysis of quantitative human behavioral traits? J Mol Med 1996 74: 515–521

    Article  CAS  PubMed  Google Scholar 

  28. Manji HK, Lenox RH . Signaling: cellular insights into the pathophysiology of bipolar disorder Biol Psychiatry 2000 48: 518–530

    Article  CAS  PubMed  Google Scholar 

  29. Chen G, Zeng WZ, Jiang L et al. The mood stabilizing agents lithium and valproate robustly increase the expression of the neuroprotective protein bcl-2 in the CNS J Neurochem 1999 72: 879–882

    Article  CAS  PubMed  Google Scholar 

  30. Manji HK, Moore GJ, Chen G . Lithium at 50: have the neuroprotective effects of this unique medication been overlooked? Biol Psychiatry 1999 46: 929–940

    Article  CAS  PubMed  Google Scholar 

  31. Rajkowska G, Halaris A, Selemon LD . Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder Biol Psychiatry 2001 49: 741–752

    Article  CAS  PubMed  Google Scholar 

  32. Chen G, Rajkowska G, Du F, Seraji-Bozorgzad N, Manji HK . Enhancement of hippocampal neurogenesis by lithium J Neurochem 2000 75: 1729–1734

    Article  CAS  PubMed  Google Scholar 

  33. Chen RW, Chuang DM . Long term lithium treatment suppresses p53 and Bax expression but increases bcl-2 expression J Biol Chem 1999 274: 6039–6042

    Article  CAS  PubMed  Google Scholar 

  34. Lu R, Song L, Jope RS . Lithium attenuates p53 levels in human neuroblastoma SH-SY5Y cells Neuroreport 1999 10: 1123–1125

    Article  CAS  PubMed  Google Scholar 

  35. Nonaka S, Chuang DM . Neuroprotective effects of chronic lithium on focal cerebral ischemia in rats Neuroreport 1998 9: 2081–2084

    Article  CAS  PubMed  Google Scholar 

  36. Mamounas LA, Blue ME, Siuciak JA, Anthony AC . BDNF promotes the survival and sprouting of serotonergic axons in the rat brain J Neurosci 1995 15: 7929–7939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jacobson MD, Weil M, Raff MC . Programmed cell death in animal development Cell 1997 88: 347–354

    Article  CAS  PubMed  Google Scholar 

  38. Pettman B, Henderson CE . Neuronal cell death Neuron 1998 20: 633–647

    Article  Google Scholar 

  39. Thoenen H . Neurotrophins and neuronal plasticity Science 1995 270: 593–598

    Article  CAS  PubMed  Google Scholar 

  40. Segal RA, Greenberg ME . Intracellular signaling pathways activated by neurotrophic factors Ann Rev Neurosci 1996 19: 463–489

    Article  CAS  PubMed  Google Scholar 

  41. Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME . Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism Neuron 1998 20: 709–726

    Article  CAS  PubMed  Google Scholar 

  42. Riccio A, Ahn S, Davenport CM, Blendy JA, Ginty DD . Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons Science 1999 286: 2358–2361

    Article  CAS  PubMed  Google Scholar 

  43. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME . Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms Science 1999 286: 1358–1362

    Article  CAS  PubMed  Google Scholar 

  44. Gutkind JS . The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades J Biol Chem 1998 273: 1839–1842

    Article  CAS  PubMed  Google Scholar 

  45. English JD, Sweatt JD . A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation J Biol Chem 1997 272: 19103–19106

    Article  CAS  PubMed  Google Scholar 

  46. Martin KC, Michael D, Rose JC et al. MAP kinase translocates into the nucleus of the presynaptic cell and is required for long-term life facilitation in Aplysia Neuron 1997 18: 899–912

    Article  CAS  PubMed  Google Scholar 

  47. Roberson ED, English JD, Adams JP, Selcher JC, Kondratick C, Sweatt JD . The mitogen-activated protein kinase cascade couples PKA and PKC to cAMP response element binding protein phosphorylation in area CA1 of hippocampus J Neurosci 1999 19: 4337–4348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nestler EJ . Antidepressant treatments in the 21st century Biol Psychiatry 1998 44: 526–533

    Article  CAS  PubMed  Google Scholar 

  49. Yuan PX, Chen G, Manji HK . Lithium activates the c-Jun NH2-terminal kinases (JNKs) in vitro and in the CNS in vivo J Neurochem 1999 73: 2299–2309

    Article  CAS  PubMed  Google Scholar 

  50. Yuan PX, Huong LD, Jiang YM, Gutkind JS, Manji HK, Chen G . The mood-stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth J Biol Chem 2001 276: 31674–31683

    Article  CAS  PubMed  Google Scholar 

  51. Finkbeiner S . CREB couples neurotrophin signals to survival messages Neuron 2000 25: 11–14

    Article  CAS  PubMed  Google Scholar 

  52. Manji HK, Duman RS . Impairments of neuroplasticity and cellular resilience in severe mood disorders: implications for the development of novel therapeutics Psychopharmacol Bull 2001 35: 5–49

    CAS  PubMed  Google Scholar 

  53. McEwen BS . Stress and hippocampal plasticity Ann Rev Neurosci 1999 22: 105–122

    Article  CAS  PubMed  Google Scholar 

  54. Duman RS, Malberg J, Nakagawa S, D'Sa C . Neuronal plasticity and survival in mood disorders Biol Psychiatry 2000 48: 32–39

    Article  Google Scholar 

  55. Drevets WC, Price JL, Simpson JR Jr et al. Subgenual prefrontal cortex abnormalities in mood disorders Nature 1997 386: 824–827

    Article  CAS  PubMed  Google Scholar 

  56. Tsai G, Coyle JT . N-acetylaspartate in neuropsychiatric disorders Prog Neurobiol 1995 46: 531–540

    Article  CAS  PubMed  Google Scholar 

  57. Moore GJ, Bebchuk JM, Hasanat K et al. Lithium increases N-acetyl-aspartate in the human brain: in vivo evidence in support of bcl-2’s neurotrophic effects? Biol Psychiatry 2000 48: 1–8

    Article  CAS  PubMed  Google Scholar 

  58. Moore GJ, Bebchuk JM, Wilds IB, Chen G, Manji HK . Lithium-induced increase in human brain gray matter The Lancet 2000 356: 1241–1242

    Article  CAS  Google Scholar 

  59. Goodwin FK, Jamison KR . Manic-Depressive Illness Oxford University Press: New York 1990

    Google Scholar 

  60. Sheline Y, Sang M, Mintun M, Gado M . Depression duration but not age predicts hippocampal volume loss in medical healthy women with recurrent major depression J Neurosci 1999 19: 5034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Strakowski SM, Wilson DR, Tohen M et al. Structural brain abnormalities in first-episode mania Biol Psychiatry 1993 33: 602–609

    Article  CAS  PubMed  Google Scholar 

  62. Hirayasu Y, Shenton ME, Salisbury DF et al. Subgenual cingulate cortex volume in first-episode psychosis Am J Psychiatry 1999 156: 1091–1093

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Li PP, Andreopoulos S, Warsh JJ . Signal transduction abnormalities in bipolar affective disorder In: Reith MEA (ed) Cerebral Signal Transduction Humana Press: New Jersey 2000 pp 283–312

    Chapter  Google Scholar 

  64. Guo Z, Zhou D, Schultz PG . Designing small-molecule switches for protein–protein interactions Science 2000 288: 2042–2045

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author's research was supported by the NIMH, the Theodore and Vada Stanley Foundation and NARSAD. Ms Kerri R Gibala provided outstanding editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H K Manji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manji, H., Chen, G. PKC, MAP kinases and the bcl-2 family of proteins as long-term targets for mood stabilizers. Mol Psychiatry 7 (Suppl 1), S46–S56 (2002). https://doi.org/10.1038/sj.mp.4001018

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001018

Keywords

This article is cited by

Search

Quick links