Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Constraints on flux rates and mantle dynamics beneath island arcs from Tonga–Kermadec lava geochemistry

Abstract

Subduction processes are central to plate tectonics and to crust–mantle recycling and differentiation. Here we present a study of lavas from the Tonga–Kermadec island arc which places important constraints on the processes and rates involved. The mantle wedge overlying the subducting oceanic plate is dynamically coupled to the descending plate, but may convect more slowly than expected. Fluid and sediment fluxes from the ocean plate enrich the wedge but differ in their location, mechanisms and rates. After partial melting, magma extraction occurs rapidly via channelled flow through the wedge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of the Tonga–Kermadec island arc system.
Figure 2: Geochemical and isotopic properties of the Tonga–Kermadec lavas.
Figure 3: (230Th/232Th) versus (238U/232Th) (parentheses indicate activity ratios) ‘equiline’ diagram showing that the Tonga–Kermadec lavas with the largest U-excesses lie on or above a 50,000-yr reference line (dashed).
Figure 4: Scaled east–west cross section across the Tonga arc through Tafahi illustrating the inferred mantle wedge dynamics and flux rates be.

Similar content being viewed by others

References

  1. Davies, J. H. & Bickle, M. J. Aphysical model for the volume and composition of melt produced by hydrous fluxing above subduction zones. Phil. Trans. R. Soc. Lond. 335, 355–364 (1991).

    ADS  CAS  Google Scholar 

  2. Davies, J. H. & Stevenson, D. J. Physical model of source region of subduction zone volcanics. J. Geophys. Res. 97, 2037–2070 (1992).

    ADS  Google Scholar 

  3. Bercovici, D., Schubert, G. & Glatzmaier, G. A. Three-dimensional spherical models of convection in the Earth's mantle. Science 244, 950–955 (1989).

    ADS  CAS  PubMed  Google Scholar 

  4. Hofmann, A. W. Mantle geochemistry: the message for oceanic volcanism. Nature 385, 219–229 (1997).

    ADS  CAS  Google Scholar 

  5. Tatsumi, Y. Migration of fluid phases and genesis of basalt magmas in subduciton zones. J. Geophys. Res. 94, 4697–4707 (1989).

    ADS  CAS  Google Scholar 

  6. Brenan, J. M., Shaw, H. F., Ryerson, F. J. & Phinney, D. L. Mineral-aqueous fluid partitioning of trace elements at 900 °C and 2.0 GPa: constraints on the trace element chemistry of mantle and deep crustal fluids. Geochim. Cosmochim. Acta 59, 3331–33350 (1995).

    ADS  CAS  Google Scholar 

  7. Keppler, H. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature 380, 237–240 (1996).

    ADS  CAS  Google Scholar 

  8. Richardson, C. & McKenzie, D. Radioactive disequilibria from 2D models of melt generation by plumes and ridges. Earth Planet. Sci. Lett. 128, 425–437 (1994).

    ADS  CAS  Google Scholar 

  9. Turner, S. et al. U-series isotopes and destructive plate margin magma genesis in the Lesser Antilles. Earth Planet. Sci. Lett. 142, 191–207 (1996).

    ADS  CAS  Google Scholar 

  10. Elliott, T., Plank, T., Zindler, A., White, W. & Bourdon, B. Element transport from slab to volcanic front at the Mariana arc. J. Geophys. Res. 102, 14991–15019 (1997).

    ADS  CAS  Google Scholar 

  11. Chabaux, F. & Allègre, C. J. 238U-230Th-226Ra disequilibria in volcanics: a new insight into melting conditions. Earth Planet. Sci. Lett. 126, 61–74 (1994).

    ADS  CAS  Google Scholar 

  12. Beattie, P. Uranium-thorium disequilibria and partitioning on melting of garnet peridotite. Nature 363, 63–65 (1993).

    ADS  CAS  Google Scholar 

  13. Hawkesworth, C. J., Turner, S. P., McDermott, F., Peate, D. W. & van Calsteren, P. U-Th isotopes in arc magmas: implications for element transfer from the subducted crust. Science 276, 551–555 (1997).

    CAS  PubMed  Google Scholar 

  14. Woodhead, J., Eggins, S. & Gamble, J. High field strength and transition element systematics in island arc and back-arc basin basalts: evidence for multi-phase melt extraction and a depleted mantle wedge. Earth Planet. Sci. Lett. 114, 491–504 (1993).

    ADS  CAS  Google Scholar 

  15. Hawkesworth, C. J., Gallagher, K., Hergt, J. M. & McDermott, F. Mantle and slab contributions in arc magmas. Annu. Rev. Earth Planet. Sci. 21, 175–204 (1993).

    ADS  CAS  Google Scholar 

  16. Gill, J. B. & Williams, R. W. Th isotope and U-series studies of subduction-related volcanic rocks. Geochim. Cosmochim. Acta 54, 1427–1442 (1990).

    ADS  CAS  Google Scholar 

  17. McDermott, F. & Hawkesworth, C. J. Th, Pb and Sr isotope variations in young island arc volcanics and oceanic sediments. Earth Planet. Sci. Lett. 104, 1–15 (1991).

    ADS  CAS  Google Scholar 

  18. Condomines, M. & Sigmarsson, O. Why are so many arc magmas close to 238U-230Th radioactive equilibrium? Geochim. Cosmochim. Acta 57, 4491–4497 (1993).

    ADS  CAS  Google Scholar 

  19. Dupont, J. & Herzer, R. H. in Geology and Offshore Resources of Pacific Island arcs — Tonga Region (eds Scholl, D. W. & Vallier, T. L.) 323–332 (Circum-Pacific Council for Energy and Mineral Resources, Houston, (1985)).

    Google Scholar 

  20. Bevis, M. et al. Geodetic observations of very rapid convergence and back-arc extension at the Tonga arc. Nature 374, 249–251 (1995).

    ADS  CAS  Google Scholar 

  21. Ewart, A. & Hawkesworth, C. J. The Pleistocene-Recent Tonga-Kermadec arc lavas: Interpretation of new isotopic and rare earth data in terms of a depleted mantle source model. J. Petrol. 28, 495–530 (1987).

    ADS  CAS  Google Scholar 

  22. Cole, J. W., Graham, I. J. & Gibson, I. L. Magmatic evolution of Late Cenozoic volcanic rocks of the Lau Ridge, Fiji. Contrib. Mineral. Petrol. 104, 540–554 (1990).

    ADS  CAS  Google Scholar 

  23. Ewart, A., Bryan, W. B., Chappell, B. W. & Rudnick, R. L. Regional Geochemistry of the Lau-Tonga arc and backarc systems. Proc. ODP Sci. Res. 135, 385–425 (1994).

    CAS  Google Scholar 

  24. Hergt, J. M. & Hawkesworth, C. J. Pb-, Sr-, and Nd-isotopic evolution ofthe Lau Basin: implications for mantle dynamics during backarc opening. Proc. ODP Sci. Res. 135, 505–517 (1994).

    CAS  Google Scholar 

  25. Ewart, A., Brothers, R. N. & Mateen, A. An outline of the geology and geochemistry, and the possible petrogenetic evolution of the volcanic rocks of the Tonga-Kermadec-New Zealand island arc. J. Volcanol. Geotherm. Res. 2, 205–250 (1977).

    ADS  CAS  Google Scholar 

  26. Isacks, B. L. & Barazangi, M. in Island Arcs, Deep Sea Trenches, and Back-Arc Basins (eds Talwani, M. & Pitman, W. C.) 99–114 (Am. Geophys. Un., Washington DC, (1977)).

    Google Scholar 

  27. Turner, S. et al. 238U-230Th disequilibria, magma petrogenesis and flux rates beneath the depleted Tonga-Kermadec island arc. Geochim. Cosmochim. Acta(in the press).

  28. Hawkesworth, C., Turner, S., Peate, D., McDermott, F. & van Calsteren, P. Elemental U and Th variations in island arc rocks: implications for U-series isotopes. Chem. Geol. 139, 207–221 (1997).

    ADS  CAS  Google Scholar 

  29. Plank, T. & Langmuir, C. H. Tracing trace elements from sediment input to volcanic output at subduction zones. Nature 362, 739–743 (1993).

    ADS  CAS  Google Scholar 

  30. Miller, D. M., Goldstein, S. L. & Langmuir, C. H. Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature 368, 514–520 (1994).

    ADS  CAS  Google Scholar 

  31. Brenan, J. M., Shaw, H. F. & Ryerson, J. Experimental evidence for the origin of lead enrichment in convergent-margin magmas. Nature 378, 54–56 (1995).

    ADS  CAS  Google Scholar 

  32. Bourdon, B., Zindler, A., Elliott, T. & Langmuir, C. H. Constraints on mantle melting at mid-ocean ridges from global 238U-230Th disequilibrium data. Nature 384, 231–235 (1996).

    ADS  CAS  Google Scholar 

  33. Plank, T. & Langmuir, C. H. The geochemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol.(in the press).

  34. Burns, R. E. et al. Site 204. Init. Rep. DSDP 21, 33–56 (1973).

    Google Scholar 

  35. Cheng, Q. et al. Isotopic evidence for a hotspot origin of the Louisville seamount chain. Am. Geophys. Un. Monogr., Washington DC 43, 283–296 (1987).

    ADS  Google Scholar 

  36. Lonsdale, P. Sedimentation and tectonic modification of Samoan archipelagic apron. Am. Assoc. Petrol. Geol. Bull. 59, 780–798 (1975).

    Google Scholar 

  37. Peacock, S. M., Rushmer, T. & Thompson, A. B. Partial melting of subducting oceanic crust. Earth Planet. Sci. Lett. 121, 227–244 (1994).

    ADS  CAS  Google Scholar 

  38. Taylor, B., Zellmer, K., Martinez, F. & Goodliffe, A. Sea-floor spreading in the Lau back-arc basin. Earth Planet. Sci. Lett. 144, 35–40 (1996).

    ADS  CAS  Google Scholar 

  39. Dunn, T. & Sen, C. Mineral/matrix partition coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: a combined analytical and experimental study. Geochim. Cosmochim. Acta 58, 717–733 (1994).

    ADS  CAS  Google Scholar 

  40. Spiegelman, M. & Elliott, T. Consequences of melt transport for uranium series disequilibrium in young lavas. Earth Planet. Sci. Lett. 118, 1–20 (1993).

    ADS  CAS  Google Scholar 

  41. Furukawa, Y. Magmatic processes under arcs and formation of the volcanic front. J. Geophys. Res. 98, 8309–8319 (1993).

    ADS  Google Scholar 

  42. McKenzie, D. The extraction of magma from the crust and mantle. Earth Planet. Sci. Lett. 74, 81–91 (1985).

    ADS  CAS  Google Scholar 

  43. Liu, J., Bohlen, S. R. & Ernst, W. G. Stability of hydrous phases in subducting oceanic crust. Earth Planet. Sci. Lett. 143, 161–171 (1996).

    ADS  CAS  Google Scholar 

  44. Green, D. H. Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and water-undersaturated conditions. Tectonophysics 17, 285–297 (1973).

    ADS  CAS  Google Scholar 

  45. Wyllie, P. J. Magmas and volatiles components. Am. Mineral. 64, 469–500 (1979).

    CAS  Google Scholar 

  46. Davies, J. H. & Rowland, A. Importance of temperature dependent viscosity and hydraulic fracture on physical models of subduction zone magmatism. Geol. Soc. Aust. Abstr. 45, 17–20 (1997).

    Google Scholar 

  47. Nichols, G. T., Wyllie, P. J. & Stern, C. R. Subduction zone melting of pelagic sediments constrained by melting experiments. Nature 371, 785–788 (1994).

    ADS  CAS  Google Scholar 

  48. Molnar, P. & England, P. Temperatures in zones of steady-state underthrusting of young oceanic lithosphere. Earth Planet. Sci. Lett. 131, 57–70 (1995).

    ADS  CAS  Google Scholar 

  49. Danyushevsky, L. V., Sobolev, A. V. & Falloon, T. J. North Tongan high-Ca boninite petrogenesis: the role of Samoan plume and subduction zone-transform fault transition. J. Geodyn. 20, 219–241 (1995).

    Google Scholar 

  50. Palacz, Z. A. & Saunders, A. Coupled trace element and isotope enrichment in the Cook-Austral-Samoa islands, southwest Pacific. Earth Planet. Sci. Lett. 79, 270–280 (1986).

    ADS  CAS  Google Scholar 

  51. Wright, E. & White, W. M. The origin of Samoa: new evidence from Sr, Nd, and Pb isotopes. Earth Planet. Sci. Lett. 81, 151–162 (1986).

    ADS  Google Scholar 

  52. Jenner, G. A. et al. Determination of partition coefficients from trace elements in high pressure-temperature experimental run products by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS). Geochim. Cosmochim. Acta 58, 5099–5103 (1994).

    Google Scholar 

Download references

Acknowledgements

We thank H. Davies, T. Plank, D. Peate, N. Rogers, J. Hergt, I. Smith, T.Worthington, A. Cohen and P. van Calsteren for discussions about island arc magma petrogenesis and U-series disequilibria generally; J. Bartlett and N. Rogers for providing analytical assistance; I. Smith, T.Worthington, J. Pearce, S. Acland, T. Vallier and J. Gill for providing us with samples; T. Plank for allowing us to refer to her work in press; and T. Plank for reviews of the manuscript. This work was supported in part by the NERC, and S.T. was supported by a Royal Society University Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Turner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, S., Hawkesworth, C. Constraints on flux rates and mantle dynamics beneath island arcs from Tonga–Kermadec lava geochemistry. Nature 389, 568–573 (1997). https://doi.org/10.1038/39257

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/39257

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing