Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A complex containing N-CoR, mSln3 and histone deacetylase mediates transcriptional repression

Abstract

Transcriptional repression by nuclear receptors has been correlated to binding of the putative co-repressor, N-CoR. A complex has been identified that contains N-CoR, the Mad presumptive co-repressor mSin3, and the histone deacetylase mRPD3, and which is required for both nuclear receptor- and Mad-dependent repression, but not for repression by transcription factors of the ets-domain family. These data predict that the ligand-induced switch of heterodimeric nuclear receptors from repressor to activator functions involves the exchange of complexes containing histone deacetylases with those that have histone acetylase activity.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Chambon, P. The retinoid signaling pathway: molecular and genetic analyses. Semin. Cell Biol. 5, 115– 125(1994).

    CAS  Article  Google Scholar 

  2. Mangelsdorf, D. J. et al. The nuclear receptor superfamily: the second decade. Cell 83, 835–839 (1995).

    CAS  Article  Google Scholar 

  3. Wong, J., Shi, Y. & Wolffe, A. P. A role for nucleosome assembly in both silencing and activation of the Xenopus Tgene by the thyroid hormone receptor. Genes Dev 9, 2696–2711(1995).

    CAS  Article  Google Scholar 

  4. Glass, C. K., Holloway, J. M., Devary, O. V. & Rosenfeld, M. G. The thyroid hormone receptor binds with opposite transcriptional effects to a common sequence motif in thyroid hormone and estrogen response elements. Cell 54, 313–323 (1988).

    CAS  Article  Google Scholar 

  5. Baniahmad, A., Kohne, A. C. & Renkawitz, R. A transferable silencing domain is present in the thyroid hormone receptor, in the v-erbA oncogene product and in the retinoic acid receptor.EMBO J. 11, 1015–1023 (1992).

    CAS  Article  Google Scholar 

  6. Baniahmad, A. et al. Interaction of human thyroid hormone receptor beta with transcription factor TFIIB may mediate target gene derepression and activation by thyroid hormone. Proc. Natl Acad. Sci. USA 90, 8832–8836 (1993).

    ADS  CAS  Article  Google Scholar 

  7. Baniahmad, A. et al. The t4 activation domain of the thyroid hormone receptor is required for release of a putative corepressor(s) necessary for transcriptional silencing. Mol. Cell. Biol. 15, 76–86 (1995).

    CAS  Article  Google Scholar 

  8. Horlein, A. J. et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377, 397–404 (1995).

    ADS  CAS  Article  Google Scholar 

  9. Kurokawa, R. et al. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature 377, 451–454 (1995).

    ADS  CAS  Article  Google Scholar 

  10. Zamir, I. et al. A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with distinct repression domains. Mol. Cell. Biol. 16, 5458–5465 (1996).

    CAS  Article  Google Scholar 

  11. Ayer, D. E., Kretzner, L. & Eisenman, R. N. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72, 211–222 (1993).

    CAS  Article  Google Scholar 

  12. Ayer, D. E. & Eisenman, R. N. A switch from Myc:Max to Mad:Max heterocomplexes accompanies monocyte/macrophage differentiation. Genes De, 7, 2110–2119 (1993).

    CAS  Article  Google Scholar 

  13. Hurlin, P. J., Ayer, D. E., Grandori, C. & Eisenman, R. N. The Max transcription factor network. Cold Spring Harb. Symp. Quant. Biol. 59, 109–116 (1994).

    CAS  Article  Google Scholar 

  14. Ayer, D. E., Lawrence, Q. A. & Eisenman, R. N. Mac-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80, 767–776(1995).

    CAS  Article  Google Scholar 

  15. Schreiber-Agus, N. et al. An amino-terminal domain of Mxil mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell 80, 777–786 (1995).

    CAS  Article  Google Scholar 

  16. Ayer, D. E., Laherty, C. D., Lawrence, Q. A., Armstrong, A. & Eisenman, R. N. Mad proteins contain a dominant transcription repression domain. Mol. Cell. Biol. 16, 5772–5781(1996).

    CAS  Article  Google Scholar 

  17. Nasmyth, K., Stillman, D. & Kipling, D. Both positive and negative regulators of HO transcription are required for mother-cell-specific mating type switching. Cell 48, 579–587 (1987).

    CAS  Article  Google Scholar 

  18. Sternber, P. W., Stern, M. J., Clark, I. & Herskowitz, I. Activation of the yeast HO gene by release from multiple negative controls. Cell 48, 567–577 (1987).

    Article  Google Scholar 

  19. Wang, H., Clark, I., Nicholson, P. R., Herskowitz, I. & Stillman, D. J. The S. cerevisiae SIN3 gene, a negative regulator of HO, contains four paired amphipathic helical motifs. Mol. Cell. Biol. 10, 5927–5936 (1990).

    CAS  Article  Google Scholar 

  20. Vidal, M., Strich, R., Esposito, R. E. Gaber, R. F. RPD1 is required for maximal activation and repression of diverse yeast genes. Mol. Cell. Biol. 11, 6306–6316 (1991).

    CAS  Article  Google Scholar 

  21. Vidal, M. Gaber, R. F. RPD3 encodes a second factor required to achieve maximal positive and negative regulation. Mol. Cell. Biol. 11, 6317–6327 (1991).

    CAS  Article  Google Scholar 

  22. Wang, H. Stillman, D. Transcriptional repression in S. cerevisiae by a SIN3-LexA fusion protein. Mol. Cell. Biol. 13, 1805–1814 (1993).

    CAS  Google Scholar 

  23. Nawaz, Z. et al. The yeast SIN3 gene product negatively regulates the activity of the human progesterone receptor. Mol. Gen. Genet. 245, 724–733 (1994).

    CAS  Article  Google Scholar 

  24. Taunton, J., Hassig, C. A. & Schreiber, S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411 (1996).

    ADS  CAS  Article  Google Scholar 

  25. Yoshida, M., Horinouchi, S. & Beppu, T. Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. BioEssays 17, 423–430 (1995).

    CAS  Article  Google Scholar 

  26. Yang, W.-M., Inouye, C ., Zeng, Y., Bearss, D. & Seto, E. Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc. Natl Acad. Sci. USA 93, 12845–12850 1996).

    ADS  CAS  Article  Google Scholar 

  27. Rose, D. W., McCabe, G., Feramisco, J. R. & Adler, M. Expression of c–fos and AP-1 activity in senescent human fibroblasts is not sufficient for DNA synthesis. J. Cell Biol. 119, 1405–1411 (1992).

    CAS  Article  Google Scholar 

  28. Sgouras, D. N. et al. ERF: an ETS–domain protein with strong transcriptional repressor activity, can suppress ets–associated tumorigenesis and is regulated by phosphorylation during cell cycle and mitogenic stimulation. EMBO J. 14, 4781–4793 (1995).

    CAS  Article  Google Scholar 

  29. O'Neill, E. M., Rebay, I., Tijian, R. & Rubin, G. M. The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell 78, 137–147 (1994).

    CAS  Article  Google Scholar 

  30. Chen, J. D. & Evans, R. M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377, 454–457 (1995).

    ADS  CAS  Article  Google Scholar 

  31. Rundlett, S. E. et al. HDA I and RPD3 are members of distinct yeast histone deacetylase complexes. Proc. Natl Acad. Sci. USA 93, 14503–14508 (1996).

    ADS  CAS  Article  Google Scholar 

  32. Gray, S. & Levine, M. Transcriptional repression in development. Curn Opin. Cell Biol. 8, 358–364 (1996).

    CAS  Google Scholar 

  33. Kingston, R. E., Bunker, C. A. & Imbalzano, A. N. Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev. 10, 905–920 (1996).

    Google Scholar 

  34. Svaren, J. Horz, W. Regulation of gene expression by nucleosomes. Curr Opin. Genet. Dev 6, 164–170 (1996).

    CAS  Article  Google Scholar 

  35. Hanna-Rose, W. & Hansen, U. Active repression mechanisms of eukaryotic transcription repressors. Trends Genet. 12, 229–234 (1996).

    CAS  Article  Google Scholar 

  36. Johnson, A. D. The price of repression. Cell 81, 655–658 (1995).

    CAS  Article  Google Scholar 

  37. Peterson, C. L. Multiple SWitches to turn on chromatin. Cur, Opin. Genet. Dev, 6, 171–175 (1996).

    CAS  Article  Google Scholar 

  38. Roth, S. Y. Allis, C. D. Histone acetylation and chromatin assembly: A single escort, multiple dances? Cell 87, 5–8 (1996).

    CAS  Article  Google Scholar 

  39. Wolffe, A. P. & Pruss, D. Targeting chromatin disruption. Cell 84, 817–819 (1996).

    CAS  Article  Google Scholar 

  40. Lee, D. Y., Hayes, J. J., Pruss, D. Wolffe A. P. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72, 73–84 (1993).

    CAS  Article  Google Scholar 

  41. Scol, W., Mahon, M. J., Lee, Y. K. & Moore, D. D. Two receptor interacting domains in the nuclear hormone receptor corepressor RIP13/N-CoR. Mol. Endocrinol. 10, 1646–1655 (1996).

    Google Scholar 

  42. Keleher, C. A., Redd, M., Schultz, J., Carlson, M. & Johnson, A. D. SSN6-Tup 1 is a general repressor of transcription in yeast. Cell 68, 709–719 (1992).

    CAS  Article  Google Scholar 

  43. Almouzni, G., Khochbin, S., Dimitrov, S. & Wolffe, A. P. Histone acetylation influences both gene expression and development of Xenopus laevis. Dev. Biol. 165, 654–659 (1994).

    CAS  Article  Google Scholar 

  44. Ogryzko, V. V., Schlitz, R. L., Russanova, V., Howard, B. & Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953–959 (1996).

    CAS  Article  Google Scholar 

  45. Bannister, A. J. & Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature 384, 641– 643 (1996).

    ADS  CAS  Article  Google Scholar 

  46. Kamei, Y. et al. A CBP integrator complex mediates transcriptional activation and AP– I inhibition by nuclear receptors. Cell 85, 1–12 (1996).

    Article  Google Scholar 

  47. Hendzel, M. J., Delcuve, G. P. & Davie, J. R. Histone deacetylase is a component of the internal nuclear matrix. J. Biol. Chem. 266, 21936–21942 (1991).

    CAS  PubMed  Google Scholar 

  48. Li, W., Chen, H. Y. & Davie, J. R. Properties of chicken erythrocyte histone deacetylase associated with the nuclear matrix. Biochem. J. 314, 631–637 (1996).

    CAS  Article  Google Scholar 

  49. Onate, S. A., Tsai, S. Y., Tsai, M.–J. & O'Malley, B. W. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270, 1354–1357 (1995).

    ADS  CAS  Article  Google Scholar 

  50. Yang, X.-J., Ogryzko, V. V., Nishikawa, J.-I., Howard, B. H. & Nakatani, Y. Nature 382, 319–324 (1996).

    ADS  CAS  Article  Google Scholar 

  51. Laherty, C. D. et al. Cell (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heinzel, T., Lavinsky, R., Mullen, TM. et al. A complex containing N-CoR, mSln3 and histone deacetylase mediates transcriptional repression. Nature 387, 43–48 (1997). https://doi.org/10.1038/387043a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387043a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing