Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN- γ production

Abstract

Interferon-γ-inducing factor (IGIF, interleukin-18) is a recently described cytokine that shares structural features with the inter-leukin-1 (IL-1) family of proteins and functional properties with IL-121–4. Like IL-12, IGIF is a potent inducer of interferon (IFN)-γ from T cells and natural killer cells1–3,5,6. IGIF is synthesized as a biologically inactive precursor molecule (proIGIF). The cellular production of IL-lβ, a cytokine implicated in a variety of inflammatory diseases, requires cleavage of its precursor (proIL-lβ) at an Asp-X site by interleukin-lβ-converting enzyme7,8 (ICE, recently termed caspase-19). The Asp-X sequence at the putative processing site in proIGIF2,3 suggests that a protease such as caspase-1 might be involved in the maturation of IGIF4. Here we demonstrate that caspase-1 processes proIGIF and proIL-lβ with equivalent efficiencies in vitro. A selective caspase-1 inhibitor blocks both lipopolysaccharide-induced IL-1β and IFN-γ production from human mononuclear cells. Furthermore, caspase-1-deficient mice are defective in lipopolysaccharide-induced IFN-γ production. Our results thus implicate caspase-1 in the physiological production of IGIF and demonstrate that it plays a critical role in the regulation of multiple proinflammatory cytokines. Specific caspase-1 inhibitors would provide a new class of anti-inflammatory drugs with multipotent action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nakamura, K. et al. Purification of a factor which provides a costimulatory signal for gamma interferon production. Infect. Immun. 61, 64–70 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Okamura, H. et al. Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 378, 88–91 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Ushio, S. et al. Cloning of the cDNA for human IFN-gamma-inducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein. J. Immunol. 156, 4274–4279 (1996).

    CAS  PubMed  Google Scholar 

  4. Bazan, J. F., Timans, J. C. & Kastelein, R. A. A newly defined interleukin-1? Nature 379, 591 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Okamura, H. et al. A novel costimulatory factor for gamma interferon induction found in the livers of mice causes endotoxic shock. Infect. Immun. 63, 3966–3972 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Micallef, M. J. et al. Interferon-gamma-inducing factor enhances T helper 1 cytokine production by stimulated human T cells: synergism with interleukin-12 for interferon-gamma production. Eur. J. Immunol. 26, 1647–1651 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Thornberry, N. A. et al. A novel heterodimeric cysteine protease is required for interleukin- 1 beta processing in monocytes. Nature 356, 768–774 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Fraser, A. & Evan, G. A license to kill. Cell 85, 781–784 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Alnemri, E. S. et al. Human caspase-l/CED-3 protease nomenclature. Cell 87, 171 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Li, P. et al. Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80, 401–411 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Kuida, K. et al. Altered cytokine export and apoptosis in mice deficient in interleukin- Ibeta converting enzyme. Science 267, 2000–2003 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Martin, S. J. & Green, D. R. Protease activation during apoptosis: death by a thousand cuts? Cell 82, 349–352 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Patel, T., Gores, G. J. & Kaufmann, S. H. The role of proteases during apoptosis. FASEB J. 10, 587–597 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–372 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Kamens, J. et al. Identification and characterization of ICH-2, a novel member of the interleukin-1 beta-converting enzyme family of cysteine proteases. J. Biol. Chem. 270, 15250–15256 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Magram, J. et al. IL-12-deficient mice are defective in IFN gamma production and type 1 cytokine responses. Immunity 4, 471–481 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Hunter, C. A., Chizzonite, R. & Remington, J. S. IL-lβ is required for IL-12 to induce production of IFN-γ by NK cells: a role for IL-lβ in the T cell independent mechanism of resistance against intracellular pathogens. J. Immunol. 155, 4347–4354 (1995).

    CAS  PubMed  Google Scholar 

  18. D'Andrea, A. et al. Interleukin 10 (IL-10) inhibits human lymphocyte interferon-γ production by suppressing natural killer cell factor/IL-12 synthesis in accessory cells. J. Exp. Med. 178, 1041–1048 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Abbas, A. K., Murphy, K. M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Neurath, M. F. et al. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J. Exp. Med. 182, 1281–1290 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Campbell, I. L. et al. Essential role for interferon-gamma and interleukin-6 in autoimmune insulin-dependent diabetes in NOD/Wehi mice. J. Clin. Invest. 87, 739–742 (1991).

  22. Locksley, R. M. Interleukin 12 in host defense against microbial pathogens. Proc. Natl Acad. Sci. USA 90, 5879–5880 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gu, Y. et al. Activation of interferon-γ inducing factor mediated by interleukin-1β converting enzyme. Science 275, 206–209 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Fletcher, D. S. et al. A synthetic inhibitor of interleukin-1 beta converting enzyme prevents endotoxin-induced interleukin-1 beta production in vitro and in vivo. J. Interferon Cytokine Res. 15, 243–248 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Hugunin, M. et al. Protease activity of in vitro transcribed and translated Caenorhabditis elegans cell death gene (ced-3) product. J. Biol. Chem. 271, 3517–3522 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghayur, T., Banerjee, S., Hugunin, M. et al. Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN- γ production. Nature 386, 619–623 (1997). https://doi.org/10.1038/386619a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386619a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing