Perceived geometrical relationships affected by eye-movement signals

Article metrics


To determine the location of visual objects relative to the observer, the visual system must take account not only of the location of the stimulus on the retina, but also of the direction of gaze1. In contrast, the perceived spatial relationship between visual stimuli is normally assumed to depend on retinal information alone, and not to require information about eye position. We now show, however, that the perceived alignment of three dots—tested by a vernier alignment task2,3—is systematically altered in the period immediately preceding a saccade. Thus, information about eye position can modify not only the perceived relationship of the entire retinal image to the observer, but also the relations between elements within the image. The processing of relative position and of egocentric (observer-centred) position may therefore be less distinct than previously believed4–6.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Grüsser, O.-J. Space perception and the gazemotor system. Hum. Neurobiol. 1, 73–76 (1982).

  2. 2

    Westheimer, G. Visual acuity and hyperacuity. Invest. Ophthal. 14, 570–572 (1975).

  3. 3

    Levi, D. M. & Klein, S. A. Limitations on position coding imposed by undersampling and univariance. Vision Res. 36, 2111–2120 (1996).

  4. 4

    Galletti, C. & Battaglini, P. P. Gaze-dependent visual neurons in area V3A of monkey prestriate cortex. J. Neurosci. 9, 1112–1125 (1989).

  5. 5

    Weyand, T. G. & Malpeli, J. C. Responses of neurons in primary visual cortex are modulated by eye position. J. Neurophysiol 69, 2258–2260 (1993).

  6. 6

    MacKay, D. M. in Handbook of Sensory Physiology (ed. Jung, R.) VII/3, 307–332 (Springer-Verlag, Berlin, 1973).

  7. 7

    Matin, L. in Handbook of Sensory Physiology (eds Jameson, D. & Hurvich, L.) VII/4, 307–332 (Springer-Verlag, Berlin, 1972).

  8. 8

    Honda, H. in Attention and Performance (ed. Jeannerod, M.) XIII, 567–582 (Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1990).

  9. 9

    Honda, H. The time courses of visual mislocalization and of extraretinal eye position signals at the time of vertical saccades. Vision Res. 31, 1915–1921 (1991).

  10. 10

    Schlag, J. & Schlag-Rey, M. Illusory localization of stimuli flashed in the dark before saccades. Vision Res. 35, 2347–2357 (1995).

  11. 11

    Ross, J., Morrone, M. C. & Burr, D. Nature 386, 598–601 (1997).

  12. 12

    Volkmann, F. C., Schick, A. M. L. & Riggs, L. A. Time course of visual inhibition during voluntary saccades. J. Opt. Soc. Am. 58, 562–569 (1969).

  13. 13

    Posner, M. I. Orienting of attention. Quart. J. Exp. Psych. 32, 3–25 (1980).

  14. 14

    Westhiemer, G. & McKee, S. P. Spatial configurations for visual hyperacuity. vision Res. 17, 941–947 (1977).

  15. 15

    Groll, S. L. & Hirsch, J. Two-dot vernier discrimination within 2.0degrees of the foveal center. J. Opt. Soc. Am. A 4, 1535–1542 (1987).

  16. 16

    Whitaker, D., Rovamo, J., MacVeigh, D. & Makela, P. Spatial scaling of vernier acuity tasks. Vision Res. 32, 1481–1491 (1992).

  17. 17

    Levi, D. M. & Waugh, S. A. Spatial scale shifts in peripheral vernier acuity. Vision Res. 34, 2215–2238 (1994).

  18. 18

    Parker, A. & Hawken, M. Capabilities of monkey cortical cells in spatial-resolution tasks. J. Opt. Soc. Am. 2, 1101–1114 (1985).

  19. 19

    Swindale, N. V. & Cynader, M. S. Vernier acuity of neurons in cat visual cortex. Nature 319, 591–593 (1986).

  20. 20

    Shapley, R. & Victor, J. Hyperacuity in cat retinal ganglion cells. Science 231, 999–1002 (1986).

  21. 21

    Fahle, M. & Poggio, T. Visual hyperacuity: spatiotemporal interpolation in human vision. Proc. R. Soc. Lond. B 213, 51–477 (1981).

  22. 22

    De Valois, R. L. & De Valois, K. K. Vernier acuity with stationary moving Gabors. Vision Res. 31, 1619–1626 (1991).

  23. 23

    Andersen, R. A., Essick, G. K. & Siegel, R. M. Encoding of spatial location by posterior parietal neurons. Science 230, 456–458 (1985).

  24. 24

    Duhamel, J., Colby, C. L. & Goldberg, M. E. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90–92 (1992).

  25. 25

    Trotter, Y., Celebrini, S., Stricanne, B., Thorpe, S. & Imbert, M. Modulation of neural stereoscopic processing in primate area VI by the viewing distance. Science 257, 1279–1281 (1992).

  26. 26

    Pouget, A., Fisher, S. A. & Sejnowski, T. J. Egocentric representation in early vision. J. Cogn. Neurosci. 5, 150–161 (1993).

  27. 27

    Pouget, A. & Sejnowski, T. J. Spatial transformations in the parietal cortex using basis functions. J. Cogn. Neurosci. 9, 222–237 (1997).

  28. 28

    Wehrhahn, C. & Westheimer, G. Temporal asynchrony interferes with vernier acuity. Vis. Neurosci. 10, 13–19 (1993).

  29. 29

    Lindblom, B. & Westheimer, G. Binocular summation of hyperacuity tasks. J. Opt. Soc. Am. A 6, 585–589 (1989).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.